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1 Groups

1.1 Notation

1. ℕ = {1, 2, …}
2. ℤ = {…, −1, 0, 1, …}
3. ℚ = {𝑎

𝑏 : 𝑎 ∈ ℤ, 𝑏 ∈ ℕ}
4. ℝ = real numbers
5. ℂ = {𝑎 + 𝑏𝑖 : 𝑎, 𝑏 ∈ ℝ, 𝑖2 = −1}

For 𝑛 ∈ ℕ, ℤ𝑛 = integers modulo 𝑛 = {[0], …, [𝑛 − 1]} where [𝑟] = {𝑧 ∈ ℤ : 𝑍 ≡ 𝑟 mod 𝑛}
We note that the set 𝑆 = ℕ, ℤ, ℚ, ℝ, ℂ, ℤ𝑛 has 2 operations +, ⋅.
For 𝑛 ∈ ℕ, an 𝑛×𝑛 matrix over ℝ (or ℚ or ℂ) is an 𝑛×𝑛 array

𝐴 = [𝑎𝑖𝑗] =
[

𝑎11

⋮
𝑎𝑛1

…
⋱
…

𝑎1𝑛
⋮

𝑎𝑛𝑛]



with 𝑎𝑖𝑗 ∈ ℝ.

Note we can also do +, ⋅. For 𝐴, 𝐵 ∈ 𝑀𝑛(ℝ)

𝐴 + 𝐵 ≔ [𝑎𝑖𝑗 + 𝑏𝑖𝑗] 𝐴 ⋅ 𝐵 ≔ [∑
𝑛

𝑘=1
𝑎𝑖𝑘𝑏𝑘𝑗]

1.2 Groups

Definition 1.2.1

Let 𝐺 be a set and ∗ : 𝐺 × 𝐺 → 𝐺. We say 𝐺 is a group if the following are satisfied:

1. Associativity: if 𝑎, 𝑏, 𝑐 ∈ 𝐺, then 𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐
2. Identity: there is 𝑒 ∈ 𝐺 such that 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎 for all 𝑎 ∈ 𝐺
3. Inverses: for all 𝑎 ∈ 𝐺, there is 𝑎−1 ∈ 𝐺 such that 𝑎 ∗ 𝑎−1 = 𝑎−1 ∗ 𝑎 = 𝑒

Definition 1.2.2

A group is called abelian if 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 for all 𝑎, 𝑏 ∈ 𝐺

Exercise 1.2.1

Prove in the definition of a group, 1-sided identity and inverses are enough to have 2-sided 

identity and inverses

Groups 2
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Proposition 1.1 previous exercise

Suppose 𝐺 is a set, ∗ : 𝐺 × 𝐺 → 𝐺 is associative. Suppose there is 𝑒 ∈ 𝐺 such that 𝑒 ∗ 𝑎 = 𝑎 for 

all 𝑎 ∈ 𝐺. Further suppose that for every 𝑎 ∈ 𝐺, there is 𝑎−1 ∈ 𝐺 such that 𝑎−1 ∗ 𝑎 = 𝑒. Then 

for all 𝑎 ∈ 𝐺,

1. 𝑎 ∗ 𝑒 = 𝑎
2. 𝑎 ∗ 𝑎−1 = 𝑒

Proof of 1: Let 𝑎 ∈ 𝐺, then

𝑎−1 ∗ 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑒 = 𝑒 = 𝑎−1 ∗ 𝑎

Multiplying on the left by 𝑎−1−1
 gives

𝑎−1−1 ∗ 𝑎−1 ∗ 𝑎 ∗ 𝑒 = 𝑎−1−1 ∗ 𝑎−1 ∗ 𝑎
⟹ 𝑒 ∗ 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎
⟹ 𝑎 ∗ 𝑒 = 𝑎

☐

Proof of 2: Let 𝑎 ∈ 𝐺, then

𝑎−1 ∗ 𝑎 ∗ 𝑎−1 = 𝑒 ∗ 𝑎−1 = 𝑎−1

Again multiplying on the left by 𝑎−1−1
 gives

𝑎 ∗ 𝑎−1 = 𝑒

☐

Proposition 1.2

Let 𝐺 be a group, let 𝑎 ∈ 𝐺. Then

1. The group identity is unique

2. The inverse of 𝑎 is unique

Proof of 1: Suppose 𝑒1, 𝑒2 are both identities. Then

𝑒1 = 𝑒1 ∗ 𝑒2 = 𝑒2

☐

Proof of 2: Suppose 𝑏1, 𝑏2 are inverses of 𝑎. Then

𝑏1 = 𝑏1 ∗ 𝑒 = 𝑏1 ∗ (𝑎 ∗ 𝑏2) = (𝑏1 ∗ 𝑎) ∗ 𝑏2 = 𝑒 ∗ 𝑏2 = 𝑏2

☐

Example 1.2.1

(ℤ, +), (ℚ, +), (ℝ, +), (ℂ, +) are all abelian groups

Groups 3
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Example 1.2.2

(ℤ, ⋅), (ℚ, ⋅), (ℝ, ⋅), (ℂ, ⋅) are not groups as 0 has no inverse

Example 1.2.3

but (ℚ ∖ {0}, ⋅), (ℝ ∖ {0}, ⋅), (ℂ ∖ {0}, ⋅) are abelian groups

Definition 1.2.3

For a set (𝑆, ⋅) let 𝑆∗ ⊆ 𝑆 denote the set of all elements with inverses.

Exercise 1.2.2

what is ℤ∗
𝑛?

Example 1.2.4

(𝑀𝑛(ℝ), +) is an abelian group.

Example 1.2.5

Consider (𝑀𝑛(ℝ), ⋅) The identity matrix is 
[

1
⋮
0

⋯
⋱
⋯

0
⋮
1
] ∈ 𝑀𝑛(ℝ)

 However, since not all 

𝑀 ∈ 𝑀𝑛(ℝ) have multiplicative inverses, (𝑀𝑛(ℝ), ⋅) is not a group.

Notation

GL𝑛(ℝ) = {𝑀 ∈ 𝑀𝑛(ℝ) : det(𝑀) ≠ 0}

Note

If 𝐴, 𝐵 ∈ GL𝑛(ℝ), then det(𝐴𝐵) = det(𝐴) det(𝐵) ≠ 0 Thus 𝐴𝐵 ∈ GL𝑛(ℝ). The associativity 

of GL𝑛(ℝ) inherits from 𝑀𝑛(ℝ). Also the identity matrix satisfies det(𝐼) = 1 ≠ 0 and thus 

𝐼 ∈ GL𝑛(ℝ). Finally, for 𝑀 ∈ GL𝑛(ℝ), there exists 𝑀−1 ∈ 𝑀𝑛(ℝ) such that 

𝑀𝑀−1 = 𝐼 = 𝑀−1𝑀  since det(𝑀−1) = 1
det(𝑀) ≠ 0, we have 𝑀−1 ∈ GL𝑛(ℝ). Thus 

(GL𝑛(ℝ), ⋅) is a group, called the general linear group of degree 𝑛 over ℝ

Note

if 𝑛 ≥ 2, then GL𝑛(ℝ) is not abelian.

Exercise 1.2.3

What is (GL1(ℝ), ⋅) ?

Groups 4
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Example 1.2.6

Let 𝐺, 𝐻  be groups. The direct product is the set 𝐺 × 𝐻  with the component wise operation 

defined by

(𝑔1, ℎ1) ∗ (𝑔2, ℎ2) = (𝑔1 ∗𝐺 𝑔2, ℎ1 ∗𝐻 ℎ2)

One can check that 𝐺 × 𝐻  is a group with identity (𝑒𝐺, 𝑒𝐻) and the inverse of (𝑔, ℎ) is 

(𝑔−1, ℎ−1)

Note

One can show by induction that if 𝐺1, …, 𝐺𝑛 are groups, then 𝐺1 × ⋯ × 𝐺𝑛 is also a group.

Notation

Given a group 𝐺 and 𝑔1, 𝑔2 ∈ 𝐺, we often denote 𝑔1 ∗ 𝑔2 by 𝑔1𝑔2 and its identity by 1. Also the 

unique inverse of an element 𝑔 ∈ 𝐺 is denoted by 𝑔−1. Also for 𝑛 ∈ ℕ, we define 

𝑔𝑛 = 𝑔 ∗ 𝑔 ∗ ⋯ ∗ 𝑔 (𝑛-times) and 𝑔−𝑛 = (𝑔−1)𝑛
. Finally, we denote 𝑔0 = 1.

Proposition 1.3

Let 𝐺 be a group and 𝑔, ℎ ∈ 𝐺 we have

1. 𝑔−1−1 = 𝑔
2. (𝑔ℎ)−1 = ℎ−1𝑔−1

3. 𝑔𝑛𝑔𝑚 = 𝑔𝑛+𝑚 for all 𝑛, 𝑚 ∈ ℤ
4. (𝑔𝑛)𝑚 = 𝑔𝑛𝑚 for all 𝑛, 𝑚 ∈ ℤ

Proof of 1: Since

𝑔−1𝑔 = 1 = 𝑔𝑔−1

so 𝑔−1−1 = 𝑔 ☐

Proof of 2:

(𝑔ℎ)(ℎ−1𝑔−1) = 𝑔(ℎℎ−1)𝑔−1 = 𝑔1𝑔−1 = 1

Similarly,

(ℎ−1𝑔−1)(𝑔ℎ) = 1

Thus (𝑔ℎ)−1 = ℎ−1𝑔−1 ☐

Proof of 3: We proceed by considering cases:

1. if 𝑛 = 0 then

𝑔𝑛𝑔𝑚 = 𝑔0𝑔𝑚 = 1𝑔𝑚 = 𝑔𝑚 = 𝑔0+𝑚 = 𝑔𝑛+𝑚

2. if 𝑛 > 0, we will proceed by induction on 𝑛. Case 1 establishes the base case. Let 𝑚 ∈ ℤ, 𝑛 ∈ ℤ≥0. 

Suppose that 𝑔𝑛𝑔𝑚 = 𝑔𝑛+𝑚 Then

Groups 5
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𝑔𝑛+1𝑔𝑚 = 𝑔𝑔𝑛𝑔𝑚 = 𝑔𝑔𝑛+𝑚 = 𝑔𝑛+𝑚+1

3. if 𝑛 < 0, then 𝑛 = −𝑘 for some 𝑘 ∈ ℕ. We have

𝑔𝑘𝑔𝑛𝑔𝑚 = 𝑔𝑘+𝑛𝑔𝑚 = 𝑔0𝑔𝑚 = 𝑔𝑚

also

𝑔𝑘𝑔𝑛+𝑚 = 𝑔𝑘+𝑚+𝑛 = 𝑔𝑚

Thus

𝑔𝑘𝑔𝑛𝑔𝑚 = 𝑔𝑘𝑔𝑛+𝑚

So

𝑔𝑛𝑔𝑚 = 𝑔𝑛+𝑚

as desired.

☐

Proof of 4: We proceed by considering cases:

1. if 𝑚 = 0, then (𝑔𝑛)𝑚 = (𝑔𝑛)0 = 1 = 𝑔0 = 𝑔𝑛0 = 𝑔𝑛𝑚

2. if 𝑚 > 0, then

(𝑔𝑛)𝑚 = 𝑔𝑛𝑔𝑛⋯𝑔𝑛
⏟

𝑚 times

= 𝑔𝑛𝑚

3. if 𝑚 < 0, then 𝑚 = −𝑘 for some 𝑘 ∈ ℕ. We will induct on 𝑘. For 𝑘 = 1 we see that (𝑔𝑛)−1 = 𝑔−𝑛 

since

𝑔𝑛𝑔−𝑛 = 𝑔𝑛−𝑛 = 𝑔0 = 1

Suppose (𝑔𝑛)−ℓ = 𝑔−𝑛ℓ for all 1 ≤ ℓ ≤ 𝑘 Then

(𝑔𝑛)−𝑘−1 = (𝑔𝑛)−𝑘(𝑔𝑛)−1 = 𝑔−𝑛𝑘𝑔−𝑛 = 𝑔−𝑛𝑘−𝑛 = 𝑔−𝑛(𝑘+1)

☐

Exercise 1.2.4

prove 3,4

Warning

In general, it is not the case that if 𝑔, ℎ ∈ 𝐺 then (𝑔ℎ)𝑛 = 𝑔𝑛ℎ𝑛, this is not true unless 𝐺 is 

abelian

Groups 6
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Proposition 1.4

Let 𝐺 be a group and 𝑔, ℎ, 𝑓 ∈ 𝐺 Then

1. They satisfy the left and right cancellation. More precisely,

a. if 𝑔ℎ = 𝑔𝑓  then ℎ = 𝑓
b. if ℎ𝑔 = 𝑓𝑔 then ℎ = 𝑓

2. Given 𝑎, 𝑏 ∈ 𝐺 the equations 𝑎𝑥 = 𝑏 and 𝑦𝑎 = 𝑏 have unique solutions for 𝑥, 𝑦 ∈ 𝐺

Proof of 1-a: By left-multiplying by 𝑔−1, we have

𝑔ℎ = 𝑔𝑓 ⟺ 𝑔−1𝑔ℎ = 𝑔−1𝑔𝑓 ⟺ ℎ = 𝑓

☐

Proof of 1-b: similar to 1-a ☐

Proof of 2: Let 𝑥 = 𝑎−1𝑏 then

𝑎𝑥 = 𝑎𝑎−1𝑏 = 𝑏

If 𝑢 is another solution, then 𝑎𝑢 = 𝑏 = 𝑎𝑥. By 1-a, 𝑢 = 𝑥. Similarly, 𝑦 = 𝑏𝑎−1 is the unique solution of 

𝑦𝑎 = 𝑏 ☐

1.3 Symmetric Groups

Definition 1.3.1

Given a non-empty set 𝐿, a permutation of 𝐿 is a bijection from 𝐿 to 𝐿. The set of all 

permutations of 𝐿 is denoted by 𝑆𝐿

Example 1.3.1

Consider the set 𝐿 = {1, 2, 3} which has the following different permutations

(123
123

), (123
132

), (123
213

), (123
231

), (123
312

), (123
321

)

Where (123
123) denotes the bijection

𝜎 : {1, 2, 3} ⟶ {1, 2, 3}

𝜎(1) = 1, 𝜎(2) = 2, 𝜎(3) = 3

Notation

For 𝑛 ∈ ℕ we denote by 𝑆𝑛 = 𝑆{1,2,…,𝑛} the set of all permutations of {1, 2, …, 𝑛}. We have seen 

that the order of 𝑆3 = 3! = 6. To consider the general 𝑆𝑛, we note that for a permutation 

𝜎 ∈ 𝑆𝑛, there are 𝑛 choices for 𝜎(1), 𝑛 − 1 choices for 𝜎(2),…, 1 choice for 𝜎(𝑛) Thus

Proposition 1.5

|𝑆𝑛| = 𝑛!

Symmetric Groups 7
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Note

For Möbius quizzes, use “9 dots” for permutations.

Remark

Given 𝜎, 𝜏 ∈ 𝑆𝑛 we can compose them to get a new element 𝜎𝜏 , where 

𝜎𝜏 = {1, 2, …, 𝑛} → {1, 2, …, 𝑛} given by 𝑥 ↦ 𝜎(𝜏(𝑥)) Since both 𝜎, 𝜏  are bijections, 𝜎𝜏 ∈ 𝑆𝑛

Example 1.3.2

Compute 𝜎𝜏  and 𝜏𝜎 if

𝜎 = (1234
3412

), 𝜏 = (1234
2431

)

Then 𝜎𝜏(1) = 𝜎(2) = 4,… Then 𝜎𝜏 = (1234
4213), and 𝜏𝜎 = (1234

3124)
We note that 𝜎𝜏 ≠ 𝜏𝜎

Note

For any 𝜎, 𝜏 ∈ 𝑆𝑛 we have that 𝜏𝜎, 𝜎𝜏 ∈ 𝑆𝑛 but 𝜎𝜏 ≠ 𝜏𝜎 in general on the other hand, for any 

𝜎, 𝜏, 𝜇 we have 𝜎(𝜏𝜇) = (𝜎𝜏)𝜇. Also note the identity permutation 𝜀 ∈ 𝑆𝑛 is defined as

𝜀 = (12⋯𝑛
12⋯𝑛

)

Thus for any 𝜎 ∈ 𝑆𝑛, we have 𝜎𝜀 = 𝜀𝜎 = 𝜎
Finally, for 𝜎 ∈ 𝑆𝑛, since it is a bijection, there is a unique bijection 𝜎−1 ∈ 𝑆𝑛 called the inverse 

permutation of 𝜎 such that for all 𝑥, 𝑦 ∈ {1, 2, …, 𝑛}

𝜎−1(𝑥) = 𝑦 ⟺ 𝜎(𝑦) = 𝑥

It follows that

𝜎(𝜎−1(𝑥)) = 𝜎(𝑦) = 𝑥

and

𝜎−1(𝜎(𝑦)) = 𝑦

i.e we have

𝜎𝜎−1 = 𝜎−1𝜎 = 𝜀

Symmetric Groups 8
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Example 1.3.3

𝜎 = (12345
45123

)

Then

𝜎−1 = (12345
34512

)

From the above we have

Proposition 1.6

(𝑆𝑛, ∘) is a group, called the symmetric group of degree 𝑛

Exercise 1.3.1

Write down all rotations and reflections that fix an equilateral triangle. Then check why it is the 

“same” as 𝑆3

Example 1.3.4

Consider

𝜎 = (123456789(10)
317694258(10)

) ∈ 𝑆10

We note that 1 → 3 → 7 → 2 → 1 and 4 → 6 → 4 and 5 → 9 → 8 and 10 → 10 Thus 𝜎 can be 

decomposed into one 4-cycle (1372), one 2-cycle (46), and one 3-cycle (598) and one 1-cycle (10) 

(we usually do not write 1-cycles) Note that these cycles are pairwise disjoint and we have

𝜎 = (1372)(46)(598)

We can also write 𝜎 = (46)(598)(1372), or 𝜎 = (64)(985)(7213)

Theorem 1.7 Cycle Decomposition

If Given 𝜎 ∈ 𝑆𝑛 with 𝜎 ≠ 𝜀, then 𝜎 is a product of (one or more) disjoint cycles of length at least 

2. This factorization is unique up to the order of the factors.

Proof: See bonus 1. ☐

Convention

Every permutation of 𝑆𝑛 can be regarded as a permutation in 𝑆𝑛+1 by fixing the number 𝑛 + 1, 

thus

𝑆1 ⊆ 𝑆2 ⊆ ⋯ ⊆ 𝑆𝑛 ⊆ 𝑆𝑛+1

Symmetric Groups 9
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1.4 Cayley Tables

Definition 1.4.1

For a finite group 𝐺, defining its operation by means of a table is sometimes convenient. Given 

𝑥, 𝑦 ∈ 𝐺, the product 𝑥𝑦 is the entry of the table in the row corresponding to 𝑥 and the column 

corresponding to 𝑦, such a table is a Cayley table.

Remark

By cancellation, the entries in each row or column of a Cayley table are all distinct

Example 1.4.1

Consider (ℤ2, +) its Cayley table is

ℤ2 [0] [1]
[0] [0] [1]
[1] [1] [0]

Example 1.4.2

Consider the group ℤ∗ = {1, −1}. Its Cayley table is

ℤ∗ 1 −1
1 1 −1

−1 −1 1

Note

If we replace 1 by [0] and −1 by [1] the Cayley tables of ℤ∗ and ℤ2 become the same. In this case, 

we say ℤ∗ and ℤ2 are isomorphic denoted by

ℤ∗ ≅ ℤ2

Cayley Tables 10
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Example 1.4.3

For 𝑛 ∈ ℕ, the cyclic group of order 𝑛 is defined by

𝐶𝑛 = {1, 𝑎, 𝑎2, …, 𝑎𝑛−1} with 𝑎𝑛 = 1 and 1, 𝑎, …, 𝑎𝑛−1 are distinct

The Cayley table of 𝐶𝑛 is as follows

𝐶𝑛 1 𝑎 𝑎2 ⋯ 𝑎𝑛−2 𝑎𝑛−1

1 1 𝑎 𝑎2 ⋯ 𝑎𝑛−2 𝑎𝑛−1

𝑎 𝑎 𝑎2 𝑎3 ⋯ 𝑎𝑛−1 1
𝑎2 𝑎2 𝑎3 𝑎4 ⋯ 1 𝑎
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑎𝑛−2 𝑎𝑛−2 𝑎𝑛−1 1 ⋯ 𝑎𝑛−4 𝑎𝑛−3

𝑎𝑛−1 𝑎𝑛−1 1 𝑎 ⋯ 𝑎𝑛−3 𝑎𝑛−2

Proposition 1.8

Let 𝐺 be a group. Up to isomorphism, we have

1. If |𝐺| = 1, then 𝐺 ≅ {1}
2. If |𝐺| = 2, then 𝐺 ≅ 𝐶2
3. If |𝐺| = 3, then 𝐺 ≅ 𝐶3
4. If |𝐺| = 4, then 𝐺 ≅ 𝐶4 or 𝐺 ≅ 𝐾4 ≅ 𝐶2 × 𝐶2

Proof of 1: obviously ☐

Proof of 2: If |𝐺| = 2 then 𝐺 = {1, 𝑔} with 𝑔 ≠ 1 Then 𝑔2 = 𝑔 or 𝑔2 = 1. We note that if 𝑔2 = 𝑔, then 

𝑔 = 1 contradiction.thus 𝑔2 = 1. Thus the Cayley table is as follows

𝐺 1 𝑔
1 1 𝑔
𝑔 𝑔 1

which is the same as 𝐶2 ☐

Proof of 3: If |𝐺| = 3, then 𝐺 = {1, 𝑔, ℎ} with 𝑔 ≠ 1, ℎ ≠ 1, 𝑔 ≠ ℎ By cancellation, we have 

𝑔ℎ ≠ 𝑔, 𝑔ℎ ≠ ℎ, thus 𝑔ℎ = 1. Similarly, we have ℎ𝑔 = 1. Also, on the row for 𝑔, we have 𝑔1 = 𝑔, 

𝑔ℎ = 1. Since all entries in this row are distinct, we have 𝑔2 = ℎ. Similarly, we have ℎ2 = 𝑔. Thus we 

obtain the following Cayley table

𝐺 1 𝑔 ℎ
1 1 𝑔 ℎ
𝑔 𝑔 ℎ 1
ℎ ℎ 1 𝑔

Which is the same as 𝐶3. ☐

Proof of 4: See assignment 1 ☐

Cayley Tables 11
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Exercise 1.4.1

Consider the symmetry group of a non-square rectangle. How is it related to 𝐾4?

2 Subgroups

2.1 Subgroups

Definition 2.1.1

Let 𝐺 be a group and 𝐻 ⊆ 𝐺. IF 𝐻  itself is a group, then we say 𝐻  is a subgroup of 𝐺.

Note

We note that since 𝐺 is a group, for ℎ1, ℎ2, ℎ3 ∈ 𝐻 ⊆ 𝐺, we have

ℎ1(ℎ2ℎ3) = (ℎ1ℎ2)ℎ3

Thus

Proposition 2.1 Subgroup Test

Let 𝐺 be a group, 𝐻 ⊆ 𝐺. Then 𝐻  is a subgroup of 𝐺 if

1. If ℎ1, ℎ2 ∈ 𝐻 , then ℎ1ℎ2 ∈ 𝐻
2. 1𝐻 ∈ 𝐻
3. If ℎ ∈ 𝐻 , then ℎ−1 ∈ 𝐻

Exercise 2.1.1

Prove that 1𝐻 = 1𝐺

Example 2.1.1

Given a group 𝐺, then {1}, 𝐺 are subgroups of 𝐺

Example 2.1.2

We have a chain of groups

(ℤ, +) ⊆ (ℚ, +) ⊆ (ℝ, +) ⊆ (ℂ, +)

Subgroups 12
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Example 2.1.3

Define

SL𝑛(ℝ) = (SL𝑛(ℝ), ⋅) ≔ {𝑀 ∈ 𝑀𝑛(ℝ), det(𝑀) = 1} ⊆ GL𝑛(ℝ)

Note that the identity matrix 𝐼 ∈ SL𝑛(ℝ). Let 𝐴, 𝐵 ∈ SL𝑛(ℝ), then

det(𝐴𝐵) = det(𝐴) det(𝐵) = 1 ⋅ 1 = 1

and

det(𝐴−1) = 1
det(𝐴)

= 1
1

= 1

i.e. 𝐴𝐵, 𝐴−1 ∈ SL𝑛(ℝ). By the subgroup test (Proposition 2.1), SL𝑛(ℝ) is a subgroup of 

GL𝑛(ℝ). We call SL𝑛(ℝ) the special linear group of order 𝑛 over ℝ

Definition 2.1.2

Given a group 𝐺, we define the center of 𝐺 to be

𝑍(𝐺) ≔ {𝑧 ∈ 𝐺 | 𝑧𝑔 = 𝑔𝑧 ∀𝑔 ∈ 𝐺}

Remark

𝑍(𝐺) = 𝐺 iff 𝐺 is abelian.

Proposition 2.2

𝑍(𝐺) is an abelian subgroup of 𝐺.

Proof: Note that 1 ∈ 𝑍(𝐺). Let 𝑦, 𝑧 ∈ 𝑍(𝐺) Then for all 𝑔 ∈ 𝐺, we have

(𝑦𝑧)𝑔 = 𝑦(𝑧𝑔) = 𝑦(𝑔𝑧) = (𝑦𝑔)𝑧 = (𝑔𝑦)𝑧 = 𝑔(𝑦𝑧)

Thus 𝑦𝑧 ∈ 𝑍(𝐺). Also, for 𝑧 ∈ 𝑍(𝐺), 𝑔 ∈ 𝐺 we have

𝑧𝑔 = 𝑔𝑧 ⟺ 𝑧−1(𝑧𝑔)𝑧−1 = 𝑧−1(𝑔𝑧)𝑧−1

⟺ 𝑔𝑧−1 = 𝑧−1𝑔

Thus 𝑧−1 ∈ 𝑍(𝐺). By the subgroup test (Proposition 2.1), 𝑍(𝐺) is a subgroup of 𝐺. Also, by the 

definition of 𝑍(𝐺), we see that it is abelian. ☐

Proposition 2.3

Let 𝐻, 𝐾 be subgroups of a group 𝐺. Then 𝐻 ∩ 𝐺 is also a subgroup.

Proof: Exercise ☐

Subgroups 13
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Proposition 2.4 Finite Subgroup Test

If 𝐻 ≠ ∅ is a finite subset of a group 𝐺, then 𝐻  is a subgroup of 𝐺 iff 𝐻  is closed under its 

operation.

Proof:

(⟹) obvious

(⟸) For 𝐻 ≠ ∅, let ℎ ∈ 𝐻 . Since 𝐻  is closed under its operation, we have ℎ, ℎ2, ℎ3, … ∈ 𝐻 . Since 𝐻  is 

finite, these elements are not all distinct. Thus ℎ𝑛 = ℎ𝑛+𝑚 for some 𝑛, 𝑚 ∈ ℕ. By cancellation, ℎ𝑚 = 1 

and thus 1 ∈ 𝐻 . Also, 1 = ℎ𝑚−1ℎ implies that ℎ−1 = ℎ𝑚−1 and thus ℎ−1 ∈ 𝐻 . By the subgroup test, 𝐻  

is a subgroup of 𝐺. ☐

2.2 Alternating Groups

Definition 2.2.1

A transposition 𝜎 ∈ 𝑆𝑛 is a cycle of length 2. i.e. 𝜎 = (𝑎𝑏) with 𝑎, 𝑏 ∈ {1, 2, …, 𝑛} and 𝑎 ≠ 𝑏.

Example 2.2.1

Consider (1245) ∈ 𝑆5. Also the composition (12)(24)(45) can be computed as

(




1
1
1
2

2
2
4
4

3
3
3
3

4
5
5
5

5
4
2
1)




Thus we have (1245) = (12)(24)(45) Also we can show that

(1245) = (23)(12)(25)(13)(24)

We see from this example that the factorization into transpositions are NOT unique. However, 

one can prove (see Bonus 2)

Theorem 2.5 Parity Theorem

If a permutation 𝜎 has two factorizations

𝜎 = 𝛾1𝛾2⋯𝛾𝑟 = 𝜇1𝜇2⋯𝜇𝑠

Where each 𝛾𝑖 and 𝜇𝑗 is a transposition, then 𝑟 ≡ 𝑠 (mod 2)

Definition 2.2.2

A permutation 𝜎 is even (or odd) if it can be written as a product of an even (or odd) number of 

transpositions. By the previous theorem, a permutation is either even or odd, but not both.

Alternating Groups 14
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Theorem 2.6

For 𝑛 ≥ 2, let 𝐴𝑛 denote the set of all even permutations in 𝑆𝑛
1. 𝜀 ∈ 𝐴𝑛
2. If 𝜎, 𝜏 ∈ 𝐴𝑛, then 𝜎𝜏 ∈ 𝐴𝑛 and 𝜎−1 ∈ 𝐴𝑛
3. |𝐴𝑛| = 1

2𝑛!

From (1) and (2), we see (𝐴𝑛) is a subgroup of 𝑆𝑛 called the alternating group of degree 𝑛.

Proof of 1: We can write 𝜀 = (12)(12). Thus 𝜀 is even. ☐

Proof of 2: if 𝜎, 𝜏 ∈ 𝐴𝑛 we can write 𝜎 = 𝜎1⋯𝜎𝑟 and 𝜏 = 𝜏1⋯𝜏𝑠 where 𝜎𝑖, 𝜏𝑗 are transpositions and 

𝑟, 𝑠 are even integers. Then

𝜎𝜏 = 𝜎1⋯𝜎𝑟𝜏1⋯𝜏𝑠

is a product of (𝑟 + 𝑠) transpositions and thus 𝜎𝜏 ∈ 𝐴𝑛. Also, we note that 𝜎𝑖 is a transposition, we 

have 𝜎2
𝑖 = 𝜀 and thus 𝜎−1

𝑖 = 𝜎𝑖. It follows that

𝜎−1 = (𝜎1⋯𝜎𝑟)
−1 = 𝜎−1

𝑟 ⋯𝜎−1
1 = 𝜎𝑟⋯𝜎1

which is an even permutation. ☐

Proof of 3: Let 𝑂𝑛 denote the set of odd permutations in 𝑆𝑛. Thus 𝑆𝑛 = 𝐴𝑛 ∪ 𝑂𝑛 and the parity 

theorem implies that 𝐴𝑛 ∩ 𝑂𝑛 = ∅. Since |𝑆𝑛| = 𝑛!, to prove |𝐴𝑛| = 1
2𝑛!, it suffices to show that 

|𝐴𝑛| = |𝑂𝑛|. Let 𝛾 = (12) and let 𝑓 : 𝐴𝑛 → 𝑂𝑛 be defined by 𝑓(𝜎) = 𝛾𝜎. Since 𝜎 is even, we have 𝛾𝜎 

is odd. Thus the map is well-defined. Also, if we have 𝛾𝜎1 = 𝛾𝜎2, then by cancellation, we get 𝜎1 = 𝜎2, 

thus 𝑓  is injective. Finally, if 𝜏 ∈ 𝑂𝑛, then 𝜎 = 𝛾𝜏 ∈ 𝐴𝑛 and 𝑓(𝜎) = 𝛾𝜎 = 𝛾(𝛾𝜏) = 𝛾2𝜏 = 𝜏 . Thus 𝑓  is 

surjective. It follows that 𝑓  is a bijection, thus |𝐴𝑛| = |𝑂𝑛|. It follows that |𝐴𝑛| = 1
2𝑛! = |𝑂𝑛| ☐

2.3 Orders of Elements

Notation

If 𝐺 is a group and 𝑔 ∈ 𝐺, we denote

⟨𝑔⟩ = {𝑔𝑘 | 𝑘 ∈ ℤ} = {…, 𝑔−1, 𝑔0 = 1, 𝑔, 𝑔2, …}

Note that 1 = 𝑔0 ∈ ⟨𝑔⟩. Also, if 𝑥 = 𝑔𝑚, 𝑦 = 𝑔𝑛 ∈ ⟨𝑔⟩ With 𝑚, 𝑛 ∈ ℤ, then 

𝑥𝑦 = 𝑔𝑛𝑔𝑚 = 𝑔𝑛+𝑚 ∈ ⟨𝑔⟩ and 𝑥−1 = 𝑔−𝑚 ∈ ⟨𝑔⟩. By the subgroup test, we have

Proposition 2.7

If 𝐺 is a group and 𝑔 ∈ 𝐺, then ⟨𝑔⟩ is a subgroup of 𝐺.

Definition 2.3.1

Let 𝐺 be a group with 𝑔 ∈ 𝐺. We call ⟨𝑔⟩ the cyclic subgroup of 𝐺 generated by 𝑔. If 𝐺 = ⟨𝑔⟩ for 

some 𝑔 ∈ 𝐺, then we say 𝐺 is cyclic and 𝑔 a generator of 𝐺.

Orders of Elements 15
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Example 2.3.1

Consider (ℤ, +) Note that for all 𝑘 ∈ ℤ, we can write 𝑘 = 𝑘 ⋅ 1. Thus we can see (ℤ, +) = ⟨1⟩. 
Similarly, (ℤ, +) = ⟨−1⟩. We observe, for any integer 𝑛 ∈ ℤ with 𝑛 ≠ ±1 there exist no 𝑘 ∈ ℤ 

such that 𝑘 ⋅ 𝑛 = 1. Thus ±1 are the only generators of (ℤ, +).

Remark

Let 𝐺 be a group and 𝑔 ∈ 𝐺. Suppose there is 𝑘 ∈ ℤ 𝑘 ≠ 0 such that 𝑔𝑘 = 1 then 

𝑔−𝑘 = (𝑔𝑘)−1 = 1. Thus we can assume 𝑘 ≥ 1. Then by the well-ordering principle, there exists 

the smallest positive integer 𝑛 such that 𝑔𝑛 = 1

Definition 2.3.2

Let 𝐺 be a group and 𝑔 ∈ 𝐺. If 𝑛 is the smallest positive integer such that 𝑔𝑛 = 1, then we say 

the order of 𝑔 is 𝑛, denoted 𝑜(𝑔) = 𝑛. If no such 𝑛 exists, we say 𝑔 has infinite order and write 

𝑜(𝑔) = ∞

Proposition 2.8

Let 𝐺 be a group and 𝑔 ∈ 𝐺 with 𝑜(𝑔) = 𝑛 ∈ ℕ. For 𝑘 ∈ ℤ we have

1. 𝑔𝑘 = 1 iff 𝑛 ∣ 𝑘
2. 𝑔𝑘 = 𝑔𝑚 iff 𝑘 ≡ 𝑚 (mod 𝑛)
3. ⟨𝑔⟩ = {1, 𝑔, 𝑔2, …, 𝑔𝑛−1} where 1, 𝑔, …, 𝑔𝑛−1 are all distinct. In particular, we have 

|⟨𝑔⟩| = 𝑜(𝑔)

Proof of 1:

(⟸) if 𝑛 ∣ 𝑘, then 𝑘 = 𝑛𝑞 for some 𝑞 ∈ ℤ. Thus

𝑔𝑘 = 𝑔𝑛𝑞 = (𝑔𝑛)𝑞 = 1𝑞 = 1

(⟹) By the division algorithm, we can write 𝑘 = 𝑛𝑞 + 𝑟 with 𝑞, 𝑟 ∈ ℤ and 0 ≤ 𝑟 < 𝑛. Since 𝑔𝑘 = 1 

and 𝑔𝑛 = 1, we have

𝑔𝑟 = 𝑔𝑘−𝑛𝑞 = 𝑔𝑘(𝑔𝑛)−𝑞 = 1 ⋅ 1−𝑞 = 1

Since 0 ≤ 𝑟 < 𝑛 and 𝑜(𝑔) = 𝑛, we have 𝑟 = 0 and hence 𝑛 ∣ 𝑘. ☐

Proof of 2: Note that 𝑔𝑘 = 𝑔𝑚 iff 𝑔𝑘𝑚 = 1. By (1), we have 𝑛 ∣ (𝑘𝑚) i.e. 𝑘 ≡ 𝑚 (mod 𝑛) ☐

Proof of 3: It follows from (2) that 1, 𝑔, …, 𝑔𝑛−1 are all distinct. Clearly, we have {1, 𝑔, …, 𝑔𝑛−1} ⊆ ⟨𝑔⟩. 
To prove the other inclusion, let 𝑔𝑘 ∈ ⟨𝑔⟩ for some 𝑘 ∈ ℤ. Write 𝑘 = 𝑛𝑞 + 𝑟 with 𝑛, 𝑟 ∈ ℤ and 

0 ≤ 𝑟 < 𝑛. Then

𝑔𝑘 = 𝑔𝑛𝑞+𝑟 = 𝑔𝑛𝑞𝑔𝑟 = (𝑔𝑛)𝑞𝑔𝑟 = 1𝑞𝑔𝑟 = 𝑔𝑟 ∈ {1, 𝑔, …, 𝑔𝑛−1}

Thus ⟨𝑔⟩ = {1, 𝑔, …, 𝑔𝑛−1} ☐

Orders of Elements 16
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Proposition 2.9

Let 𝐺 be a group and 𝑔 ∈ 𝐺 with 𝑜(𝑔) = ∞. For 𝑘 ∈ ℤ we have

1. 𝑔𝑘 = 1 iff 𝑘 = 0
2. 𝑔𝑘 = 𝑔𝑚 iff 𝑘 = 𝑚
3. ⟨𝑔⟩ = {…, 𝑔−1, 𝑔0 = 1, 𝑔, …} where 𝑔𝑖 are all distinct

Proposition 2.10

Let 𝐺 be a group and 𝑔 ∈ 𝐺 with 𝑜(𝑔) = 𝑛 ∈ ℕ. If 𝑑 ∈ ℕ, then 𝑜(𝑔𝑑) = 𝑛
gcd(𝑛,𝑑) . In particular, if 

𝑑 ∣ 𝑛, then gcd(𝑛, 𝑑) = 𝑑 and 𝑜(𝑔𝑑) = 𝑛
𝑑

Proof: Let 𝑛1 = 𝑛
gcd(𝑛,𝑑)  and 𝑑1 = 𝑑

gcd(𝑛,𝑑) . By a result from Math 135, we have gcd(𝑛1, 𝑑1) = 1. Note 

that

(𝑔𝑑)𝑛1 = (𝑔𝑑)
𝑛

gcd(𝑛,𝑑) = (𝑔𝑛)
𝑑

gcd(𝑛,𝑑) = 1

Thus it remains to show that 𝑛1 is the smallest such positive integer. Suppose (𝑔𝑑)𝑟 = 1 with 𝑟 ∈ ℕ. 

Since 𝑜(𝑔) = 𝑛, by proposition, we have 𝑛 ∣ 𝑑𝑟. Thus there is 𝑞 ∈ ℤ such that 𝑑𝑟 = 𝑛𝑞. Dividing both 

sides by gcd(𝑛, 𝑑) we get

𝑑1𝑟 = 𝑑
gcd(𝑛, 𝑑)

𝑟 = 𝑛
gcd(𝑛, 𝑑)

𝑞 = 𝑛1𝑞

Since 𝑛1 ∣ 𝑑1𝑟 and gcd(𝑛1, 𝑑1) = 1, by a result from Math 135, we get 𝑛1 ∣ 𝑟 i.e. 𝑟 = 𝑛1ℓ for some 

ℓ ∈ ℤ. Since 𝑟1, 𝑛1 ∈ ℕ, it follows that ℓ ∈ ℕ. Since ℓ ≥ 1, we get 𝑟 ≥ 𝑛1 ☐

2.4 Cyclic Groups

Remark

For a group 𝐺, if 𝐺 = ⟨𝑔⟩ for some 𝑔 ∈ 𝐺, then 𝐺 is a cyclic group. For 𝑎, 𝑏 ∈ 𝐺, we have 

𝑎 = 𝑔𝑛, 𝑏 = 𝑔𝑚 for some 𝑚, 𝑛 ∈ ℤ. We have

𝑎𝑏 = 𝑔𝑛𝑔𝑚 = 𝑔𝑛+𝑚 = 𝑔𝑚+𝑛 = 𝑔𝑚𝑔𝑛 = 𝑏𝑎

Proposition 2.11

Every cyclic group is abelian

Warning

The converse of the above proposition is not true. For example the Klein 4 group is abelian, but 

not cyclic.

Proposition 2.12

Every subgroup of a cyclic group is cyclic.

Cyclic Groups 17
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Proof: Let 𝐺 = ⟨𝑔⟩ be cyclic and 𝐻 ⊆ 𝐺 a subgroup. If 𝐻 = {1}, then 𝐻  is cyclic. Otherwise, there is 

𝑔𝑘 ∈ 𝐻  with 𝑘 ∈ ℤ ∖ {0}. Since 𝐻  is a group, we have 𝑔−𝑘 ∈ 𝐻 . Thus we can assume that 𝑘 ∈ ℕ. Let 

𝑚 be the smallest positive integer such that 𝑔𝑚 ∈ 𝐻 .

Claim: 𝐻 = ⟨𝑔𝑚⟩
Proof is exercise, by division algorithm. ☐

Proposition 2.13

Let 𝐺 = ⟨𝑔⟩ be a cyclic group with 𝑜(𝑔) = 𝑛. Then 𝐺 = ⟨𝑔𝑘⟩ iff gcd(𝑘, 𝑛) = 1.

Proof: By proposition,

𝑜(𝑔𝑘) = 𝑛
gcd(𝑛, 𝑘)

= 𝑛

☐

Theorem 2.14 Fundamental Theorem of Finite Cyclic Groups

Let 𝐺 = ⟨𝑔⟩ be a cyclic group with 𝑜(𝑔) = 𝑛 ∈ ℕ.

1. If 𝐻  is a subgroup of 𝐺, then 𝐺 = ⟨𝑔𝑑⟩ for some 𝑑 ∣ 𝑛. It follows that |𝐻| ∣ |𝐺|.
2. Conversely, if 𝑘 ∣ 𝑛, then ⟨𝑔𝑛

𝑘 ⟩ is the unique subgroup of 𝐺 with order 𝑘.

Proof of 1: By proposition, 𝐻  is cyclic. Write 𝐻 = ⟨𝑔𝑛⟩ for some 𝑚 ∈ ℕ ∪ {0}. Let 𝑑 = gcd(𝑚, 𝑛).
Claim: 𝐻 = ⟨𝑔𝑑⟩
Since 𝑑 ∣ 𝑚 we have 𝑚 = 𝑑𝑘 for some 𝑘 ∈ ℤ. Then

𝑔𝑚 = 𝑔𝑑𝑘 = (𝑔𝑑)𝑘 ∈ ⟨𝑔𝑑⟩

Thus 𝐻 = ⟨𝑔𝑚⟩ ⊆ ⟨𝑔𝑑⟩. To prove the other inclusion, since 𝑑 = gcd(𝑚, 𝑛), there is 𝑥, 𝑦 ∈ ℤ such that 

𝑑 = 𝑚𝑥 + 𝑛𝑦. Then

𝑔𝑑 = 𝑔𝑚𝑥+𝑛𝑦 = (𝑔𝑚)𝑥(𝑔𝑛)𝑦 = (𝑔𝑚)𝑥1𝑦 = (𝑔𝑚)𝑥 ∈ ⟨𝑔𝑚⟩

Thus ⟨𝑔𝑑⟩ ⊆ ⟨𝑔𝑚⟩ = 𝐻 . It follows that 𝐻 = ⟨𝑔𝑑⟩. Note that since 𝑑 = gcd(𝑚, 𝑛), we have 𝑑 ∣ 𝑛. By 

proposition, we have

|𝐻| = 𝑜(𝑔𝑑) = 𝑛
gcd(𝑛, 𝑑)

= 𝑛
𝑑

Thus |𝐻| ∣ |𝐺| ☐

Proof of 2: By proposition, the cyclic subgroup ⟨𝑔𝑛
𝑘 ⟩ is of order

𝑛
gcd(𝑛, 𝑛

𝑘)
= 𝑛

𝑛/𝑘
= 𝑘

To show uniqueness, let 𝐾 be a subgroup of 𝐺 with order 𝑘 ∣ 𝑛. By 1, let 𝐾 = ⟨𝑔𝑑⟩ where 𝑑 ∣ 𝑛. Then 

by props, we have,

𝑘 = |𝐾| = 𝑜(𝑔𝑑) = 𝑛
gcd(𝑛, 𝑑)

= 𝑛
𝑑

Cyclic Groups 18
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It follows that 𝑑 = 𝑛
𝑘  and thus 𝐾 = ⟨𝑔𝑛

𝑘 ⟩ ☐

2.5 Non-cyclic Groups

Definition 2.5.1

Let 𝑋 be a non-empty subset of a group 𝐺, and let

⟨𝑋⟩ ≔ {𝑥𝑘1
1 ⋯𝑥𝑘𝑚𝑚 | 𝑥𝑖 ∈ 𝑋, 𝑘𝑖 ∈ ℤ, 𝑚 ≥ 1}

denote the set of all products of powers of (not necessarily distinct) elements of 𝑋. Note that this 

is clearly a group. ⟨𝑋⟩ is called the subgroup of 𝐺 generated by 𝑋.

Example 2.5.1

The Klein-4 group 𝐾4 = {1, 𝑎, 𝑏, 𝑐} with 𝑎2 = 𝑏2 = 𝑐2 = 1 and 𝑎𝑏 = 𝑐. Thus

𝐾4 = ⟨𝑎, 𝑏 | 𝑎2 = 1 = 𝑏2 and 𝑎𝑏 = 𝑏𝑎⟩

Example 2.5.2

The symmetric group of order 3 𝑆3 = {𝜀, 𝜎, 𝜎2, 𝜏 , 𝜏𝜎, 𝜏𝜎2} where 𝜎3 = 𝜀 = 𝜏2 and 𝜎𝜏 = 𝜏𝜎2 

(one can take 𝜏 = (12) and 𝜎 = (123)) Thus

⟨𝜎, 𝜏 | 𝜎3 = 𝜀 = 𝜏2 and 𝜎𝜏 = 𝜏𝜎2⟩

We can also replace 𝜎, 𝜏  with 𝜎, 𝜏𝜎 or 𝜎, 𝜏𝜎2, …, etc

Definition 2.5.2

For 𝑛 ≥ 2 the dihedral group of order 2𝑛 is defined by

𝐷2𝑛 = {1, 𝑎, …, 𝑎𝑛−1, 𝑏, 𝑏𝑎, …, 𝑏𝑎𝑛−1}

Where 𝑎𝑛 = 1 = 𝑏2 and 𝑎𝑏𝑎 = 𝑏. Thus

𝐷2𝑛 = ⟨𝑎, 𝑏 | 𝑎𝑛 = 1 = 𝑏2 and 𝑎𝑏𝑎 = 𝑏⟩

Note

For 𝑛 = 2 or 3 we have

𝐷4 ≅ 𝐾4 and 𝐷6 ≅ 𝑆3

Exercise 2.5.1

For 𝑛 ≥ 3, consider a regular 𝑛-gon and its group of symmetries. How does it relate to 𝐷2𝑛?

Non-cyclic Groups 19
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3 Normal Subgroups

3.1 Homomorphisms and Isomorphisms

Definition 3.1.1

Let 𝐺, 𝐻  be groups. A mapping 𝛼 : 𝐺 → 𝐻  is a homomorphism if

𝛼(𝑎 ∗𝐺 𝑏) = 𝛼(𝑎) ∗𝐻 𝛼(𝑏) ∀𝑎, 𝑏 ∈ 𝐺

To simplify notation, we often write

𝛼(𝑎𝑏) = 𝛼(𝑎)𝛼(𝑏) ∀𝑎, 𝑏 ∈ 𝐺

Example 3.1.1

Consider the determinant map

det : GL𝑛(ℝ) ⟶ ℝ∗

𝐴 ⟼ det 𝐴

Since det 𝐴𝐵 = det 𝐴 det 𝐵, the mapping det is a homomorphism.

Proposition 3.1

Let 𝛼 : 𝑔 → 𝐻  be a group homomorphism. Then

1. 𝛼(1𝐺) = 1𝐻
2. 𝛼(𝑔−1) = 𝛼(𝑔)−1 ∀𝑔 ∈ 𝐺
3. 𝛼(𝑔𝑘) = 𝛼(𝑔)𝑘 ∀𝑘 ∈ ℤ

Definition 3.1.2

Let 𝛼 : 𝐺 → 𝐻  be a mapping between groups. If 𝛼 is a homomorphism and 𝛼 is bijective, we say 

𝛼 is an isomorphism. In this case, we say 𝐺, 𝐻  are isomorphic and write 𝐺 ≅ 𝐻 .

Proposition 3.2

We have

1. The identity map id : 𝐺 → 𝐺 is an isomorphism.

2. If 𝜎 : 𝐺 → 𝐻  is an isomorphism, then the inverse map 𝜎−1 : ℎ → 𝐺 is also an 

isomorphism.

3. If 𝜎 : 𝐺 → 𝐻  and 𝜏 : 𝐻 → 𝐾 is an isomorphism, the composite map 𝜏𝜎 : 𝐺 → 𝐾 is also 

an isomorphism.

So ≅ is (sort-of) an equivalence relation

Proof: Exercise. ☐

Homomorphisms and Isomorphisms 20
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Example 3.1.2

Let ℝ+ = {𝑟 ∈ ℝ | 𝑟 > 0}. Then (ℝ, +) ≅ (ℝ+, ⋅) since we see that

𝜎 : ℝ → ℝ+

𝑥 ⟼ 𝑒𝑥

is a bijection. Moreover, 𝜎(𝑥 + 𝑦) = 𝑒𝑥+𝑦 = 𝑒𝑥 ⋅ 𝑒𝑦 = 𝜎(𝑥)𝜎(𝑦) thus 𝜎 is an isomorphism.

Example 3.1.3

Claim: (ℚ, +) ≇ (ℚ∗, ⋅) Suppose 𝜏 : (ℚ, +) → (ℚ∗, ⋅) is an isomorphism. Thus 𝜏  is surjective. So 

there is some 𝑞 ∈ ℚ such that 𝜏(𝑞) = 2. Then

𝜏(𝑞
2
)

2
= 𝜏(𝑞

2
)𝜏(𝑞

2
) = 𝜏(𝑞

2
+ 𝑞

2
) = 𝜏(𝑞) = 2

Thus 𝜏( 𝑞
2) is a rational number whose square is 2, a contradiction.

3.2 Cosets and Lagrange’s Theorem

Definition 3.2.1

Let 𝐻  be a subgroup of a group 𝐺. If 𝑎 ∈ 𝐺, we define

𝐻𝑎 = {ℎ𝑎 | ℎ ∈ 𝐻}

to be the right coset of 𝐻  generated by 𝑎. We define the left coset similarly.

Remark

Since 1 ∈ 𝐻 , we have 𝐻1 = 𝐻 = 1𝐻 . Also 𝑎 ∈ 𝐻𝑎 and 𝑎 ∈ 𝑎𝐻 . Note that in general 𝐻𝑎 and 

𝑎𝐻  are not subgroups of 𝐺, and 𝑎𝐻 ≠ 𝐻𝑎. However, if 𝐺 is abelian, then 𝐻𝑎 = 𝑎𝐻 .

Example 3.2.1

Let 𝐾4 = {1, 𝑎, 𝑏, 𝑎𝑏}. Let 𝐻 = {1, 𝑎} which is a subgroup of 𝐾4. Note that since 𝐾4 is abelian, 

we have 𝑔𝐻 = 𝐻𝑔 for all 𝑔 ∈ 𝐾4. Then the (right or left) cosets of 𝐻  are

𝐻1 = {1, 𝑎} = 1𝐻

and

𝐻𝑏 = {𝑏, 𝑎𝑏} = 𝐻𝑎𝑏

Thus there are exactly two cosets of 𝐻  in 𝐾4

Cosets and Lagrange’s Theorem 21
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Example 3.2.2

Let 𝑆3 = {𝜀, 𝜎, 𝜎2, 𝜏 , 𝜏𝜎, 𝜏𝜎2} with 𝜎3 = 𝜀 = 𝜏2 and 𝜎𝜏𝜎 = 𝜏 . Let 𝐻 = {𝜀, 𝜏} which is a 

subgroup of 𝑆3. Since 𝜎𝜏 = 𝜏𝜎−1 = 𝜏𝜎2, the right cosets of 𝐻  are

𝐻𝜀 = {𝜀, 𝜏} = 𝐻𝜏
𝐻𝜎 = {𝜎, 𝜏𝜎} = 𝐻𝜏𝜎

𝐻𝜎2 = {𝜎2, 𝜏𝜎2} = 𝐻𝜏𝜎2

And the left cosets of 𝐻  are

𝜀𝐻 = {𝜀, 𝜏} = 𝜏𝐻

𝜎𝐻 = {𝜎, 𝜏𝜎2} = 𝜏𝜎2𝐻

𝜎2𝐻 = {𝜎2, 𝜏𝜎} = 𝜏𝜎𝐻

Notice that 𝐻𝜎 ≠ 𝜎𝐻  and 𝐻𝜎2 ≠ 𝜎2𝐻

Proposition 3.3

Let 𝐻  be a subgroup of a group 𝐺 and let 𝑎, 𝑏 ∈ 𝐺.

1. 𝐻𝑎 = 𝐻𝑏 if and only if 𝑎𝑏−1 ∈ 𝐻 . In particular, we have 𝐻𝑎 = 𝐻  if and only if 𝑎 ∈ 𝐻 .

2. If 𝑎 ∈ 𝐻𝑏, then 𝐻𝑎 = 𝐻𝑏
3. Either 𝐻𝑎 = 𝐻𝑏 or 𝐻𝑎 ∩ 𝐻𝑏 = ∅. Thus, the distinct right cosets of 𝐻  forms a partition of 

𝐺.

Proof of 1:

(⟹) If 𝐻𝑎 = 𝐻𝑏, then 𝑎 = 1𝑎 ∈ 𝐻𝑎 = 𝐻𝑏. Thus 𝑎 = ℎ𝑏 for some ℎ ∈ 𝐻  and we have 𝑎𝑏−1 = ℎ ∈ 𝐻 .

(⟸) Suppose 𝑎𝑏−1 ∈ 𝐻  for all ℎ ∈ 𝐻 . Then for all ℎ ∈ 𝐻 ,

ℎ𝑎 = ℎ𝑎𝑏−1𝑏 = ℎ(𝑎𝑏−1)𝑏 ∈ 𝐻𝑏

Thus 𝐻𝑎 ⊆ 𝐻𝑏. Note that if 𝑎𝑏−1 ∈ 𝐻 , since 𝐻  is a subgroup, then

(𝑎𝑏−1)−1 = 𝑏𝑎−1 ∈ 𝐻

Thus for all ℎ ∈ 𝐻 ,

ℎ𝑏 = ℎ(𝑏𝑎−1)𝑎 ∈ 𝐻𝑎

Thus 𝐻𝑏 ⊆ 𝐻𝑎. It follows that 𝐻𝑎 = 𝐻𝑏. ☐

Proof of 2: If 𝑎 ∈ 𝐻𝑏, then 𝑎𝑏−1 ∈ 𝐻 . Thus, by (1), we have 𝐻𝑎 = 𝐻𝑏. ☐

Proof of 3: Two cases:

1. If 𝐻𝑎 ∩ 𝐻𝑏 = ∅, then we are done.

2. If 𝐻𝑎 ∩ 𝐻𝑏 ≠ ∅, then there exists 𝑥 ∈ 𝐻𝑎 ∩ 𝐻𝑏. Since 𝑥 ∈ 𝐻𝑏, by (2), we have 𝐻𝑏 = 𝐻𝑥. Thus

𝐻𝑎 = 𝐻𝑥 = 𝐻𝑏

☐
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Remark

The analogues of the previous proposition also holds for left cosets

1. 𝑎𝐻 = 𝑏𝐻  if and only if 𝑏−1𝑎 ∈ 𝐻

Exercise 3.2.1

Let 𝐺 be a group and 𝐻  a subset of 𝐺. For 𝑎, 𝑏 ∈ 𝐺, do we still have 𝐻𝑎 = 𝐻𝑏, or 𝐻𝑎 ∩ 𝐻𝑏 = ∅ 

if 𝐻  is not a subgroup of 𝐺.

Definition 3.2.2

By the previous proposition, we see that 𝐺 can be written as a disjoint union of right cosets of 

𝐻 . We define the index [𝐺 : 𝐻] to be the number of disjoint right (or left) cosets of 𝐻  in 𝐺. (Note 

that [𝐺 : 𝐻] could be infinite).

Theorem 3.4 Lagrange’s Theorem

Let 𝐻  be a subgroup of a finite group 𝐺. We have |𝐻| ∣ |𝐺| and

[𝐺 : 𝐻] = |𝐺|
|𝐻|

Proof: Write 𝑘 = [𝐺 : 𝐻] and let 𝐻𝑎1, …, 𝐻𝑎𝑘 be the distinct right cosets of 𝐻  in 𝐺. By prop

𝐺 = 𝐻𝑎1 ⊔ ⋯ ⊔ 𝐻𝑎𝑘

is a disjoint union. Since |𝐻𝑎𝑖| = |𝐻| for each 𝑖, we have

|𝐺| = |𝐻𝑎1| + ⋯ + |𝐻𝑎𝑘| = 𝑘|𝐻|

It follows that |𝐻| ∣ |𝐺| and [𝐺 : 𝐻] = 𝑘 = |𝐺|
|𝐻| . ☐

Corollary 3.5

1. If 𝐺 is a finite group and 𝑔 ∈ 𝐺 then 𝑜(𝑔) ∣ |𝐺|
2. If 𝐺 is a finite group with |𝐺| = 𝑛, then for all 𝑔 ∈ 𝐺, we have 𝑔𝑛 = 1

Proof of 1: Take 𝐻 = ⟨𝑔⟩ in the theorem. Note that |𝐻| = 𝑜(𝑔) ☐

Proof of 2: Let 𝑜(𝑔) = 𝑚 then by (1), we have 𝑚 ∣ 𝑛. Thus

𝑔𝑛 = (𝑔𝑚)
𝑛
𝑚 = 1 𝑛

𝑚 = 1

☐
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Example 3.2.3

For 𝑛 ∈ ℕ with 𝑛 ≥ 2, let ℤ∗
𝑛 be the set of (multiplicative) invertible elements in ℤ𝑛. Let the 

Euler’s 𝜑-function 𝜑(𝑛), denote the order of ℤ∗
𝑛. i.e.

𝜑(𝑛) = |{[𝑘] ∈ ℤ𝑛 | 𝑘 ∈ {0, 1, …, 𝑛 − 1} and gcd(𝑘, 𝑛) = 1}|

As a direct consequence of the corollary, we see that if 𝑎 ∈ ℤ with gcd(𝑎, 𝑛) = 1, then 

𝑎𝜑(𝑛) ≡ 1 (mod 𝑛). This is Euler’s Theorem. If 𝑛 = 𝑝, a prime number, then Euler’s Theorem 

implies that 𝑎𝑝−1 ≡ 1 (mod 𝑝), which is Fermat’s little theorem.

Recall

If |𝐺| = 2 then 𝐺 ≅ 𝐶2, and |𝐺| = 3 then 𝐺 ≅ 𝐶3.

Corollary 3.6

If 𝐺 is a group with |𝐺| = 𝑝 a prime, then 𝐺 ≅ 𝐶𝑝, the cyclic group of order 𝑝.

Proof: Let 𝑔 ∈ 𝐺 with 𝑔 ≠ 1. Then by corollary, we have 𝑜(𝑔) ∣ 𝑝. Since 𝑔 ≠ 1 and 𝑝 is a prime, we have 

𝑜(𝑔) = 𝑝. By proposition, we have

|⟨𝑔⟩| = 𝑜(𝑔) = 𝑝

It follows that 𝐺 ≅ ⟨𝑔⟩ ≅ 𝐶𝑝 ☐

Corollary 3.7

Let 𝐻  and 𝐾 be finite subgroups of a group 𝐺. If gcd(|𝐻|, |𝐾|) = 1, then 𝐻 ∩ 𝐾 = {1}.

Proof: Note 𝐻 ∩ 𝐾 is a subgroup of 𝐻  and 𝐾 . So by Lagrange’s Theorem, we have |𝐻 ∩ 𝐾| ∣ |𝐻| and 

|𝐻 ∩ 𝐾| ∣ |𝐾|. It follows that |𝐻 ∩ 𝐾| ∣ gcd(|𝐻|, |𝐾|), i.e. |𝐻 ∩ 𝐾| = 1 Thus 𝐻 ∩ 𝐾 = {1}. ☐

3.3 Normal Subgroups

Definition 3.3.1

Let 𝐻  be a subgroup of a group 𝐺. If 𝑔𝐻 = 𝐻𝑔 for all 𝑔 ∈ 𝐺, we say 𝐻  is normal, denoted by 

𝐻 ⊲ 𝐺.

Example 3.3.1

We have {1} ⊲ 𝐺 and 𝐺 ⊲ 𝐺.

Example 3.3.2

The center 𝑍(𝐺) of 𝐺 is an abelian subgroup of 𝐺. By its definition, 𝑍(𝐺) ⊲ 𝐺. Thus every 

subgroup of 𝑍(𝐺) is normal in 𝐺.
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Example 3.3.3

If 𝐺 is an abelian group, then every subgroup of 𝐺 is normal in 𝐺. Note the converse is false (see 

assignment 3)

Proposition 3.8 Normality Test

Let 𝐻  be a subgroup of a group 𝐺. The following are equivalent:

1. 𝐻 ⊲ 𝐺
2. 𝑔𝐻𝑔−1 ⊆ 𝐻  for all 𝑔 ∈ 𝐺. We call 𝑔𝐻𝑔−1 a conjugate of 𝐻
3. 𝑔𝐻𝑔−1 = 𝐻  for all 𝑔 ∈ 𝐺. (Thus 𝐻 ⊲ 𝐺 if and only if 𝐻  is the only conjugate of 𝐻)

Proof of (1) ⟹ (2): Let 𝑔ℎ𝑔−1 ∈ 𝑔𝐻𝑔−1 for some ℎ ∈ 𝐻 . Then by (1), 𝑔ℎ ∈ 𝑔𝐻 = 𝐻𝑔, say 𝑔ℎ = ℎ1𝑔 

for some ℎ1 ∈ 𝐻 . Then 𝑔ℎ𝑔−1 = ℎ1𝑔𝑔−1 = ℎ1 ∈ 𝐻 . ☐

Proof of (2) ⟹ (3): If 𝑔 ∈ 𝐺, then by (2), 𝑔𝐻𝑔−1 ⊆ 𝐻 . Taking 𝑔−1 in place of 𝑔 in (2), we get 

𝑔−1𝐻𝑔 ⊆ 𝐻 . Thus implies that 𝐻 ⊆ 𝑔𝐻𝑔−1 Thus 𝐻 = 𝑔𝐻𝑔−1. ☐

Proof of (3) ⟹ (1): If 𝑔𝐻𝑔−1 = 𝐻 , then 𝑔𝐻 = 𝐻𝑔. ☐

Example 3.3.4

Let 𝐺 = GL𝑛(ℝ) and 𝐻 = SL𝑛(ℝ). For 𝐴 ∈ 𝐺 and 𝐵 ∈ 𝐻 , we have

det(𝐴𝐵𝐴−1) = det 𝐴 det 𝐵 det 𝐴−1 = det 𝐵 = 1

Thus 𝐴𝐵𝐴−1 ∈ 𝐻  and it follows that 𝐴𝐻𝐴−1 ⊆ 𝐻  for all 𝐴 ∈ 𝐺, so by the normality test, 

SL𝑛(ℝ) ⊲ GL𝑛(ℝ).

Proposition 3.9

If 𝐻  is a subgroup of a group 𝐺 with [𝐺 : 𝐻] = 2, then 𝐻 ⊲ 𝐺.

Proof: Let 𝑔 ∈ 𝐺, If 𝑔 ∈ 𝐻 , then 𝐻𝑔 = 𝐻 = 𝑔𝐻 . If 𝑔 ∉ 𝐻 , since [𝐺 : 𝐻] = 2, then 𝐺 = 𝐻 ⊔ 𝐻𝑔, a 

disjoint union. Then 𝐻𝑔 = 𝐺 ∖ 𝐻 . Similarly, 𝑔𝐻 = 𝐺 ∖ 𝐻 . Thus 𝑔𝐻 = 𝐻𝑔 for all 𝑔 ∈ 𝐺 i.e. 𝐻 ⊲ 𝐺. ☐

Example 3.3.5

Let 𝐴𝑛 be the alternating group contained in 𝑆𝑛. Since [𝑆𝑛 : 𝐴𝑛] = 2. By proposition, we have 

𝐴𝑛 ⊲ 𝑆𝑛.

Example 3.3.6

Let 𝐷2𝑛 = ⟨𝑎, 𝑏 | 𝑎𝑛 = 1 = 𝑏2 and 𝑎𝑏𝑎 = 𝑏⟩ be the dihedral group of order 2𝑛. Since 

[𝐷2𝑛 : ⟨𝑎⟩] = 2, by proposition, ⟨𝑎⟩ ⊲ 𝐷2𝑛

Let 𝐻  and 𝐾 be subgroups of a group 𝐺. Then the intersection 𝐻 ∩ 𝐾 is the largest subgroup of 𝐺 that 

contained in both 𝐻  and 𝐾 .

Question: What is the smallest subgroup containing 𝐻  and 𝐾? Note that 𝐻 ∪ 𝐾 is the smallest subset 
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containing 𝐻  and 𝐾 , but 𝐻 ∪ 𝐾 is a subgroup if and only if 𝐻 ⊆ 𝐾 or 𝐻 ⊇ 𝐾 . A more useful subset 

to consider is the product 𝐻𝐾 of 𝐻  and 𝐾 defined as follows

Definition 3.3.2

𝐻𝐾 = {ℎ𝑘 | ℎ ∈ 𝐻, 𝑘 ∈ 𝐾}

Remark

The product of 2 subgroups is not always a subgroup.

Lemma 3.10

Let 𝐻  and 𝐾 be subgroups of a group 𝐺, then the following are equivalent:

1. 𝐻𝐾 is a subgroup of 𝐺
2. 𝐻𝐾 = 𝐾𝐻
3. 𝐾𝐻  is a subgroup of 𝐺.

Proof of (1 ⟺ 2): Note that (2 ⟺ 3) will follow after exchanging 𝐻  and 𝐾 . Suppose (2) holds, we 

have 1 = 1 ⋅ 1 ∈ 𝐻𝐾 . Also if ℎ𝑘 ∈ 𝐻𝐾 , then (ℎ𝑘)−1 = 𝑘−1ℎ−1 ∈ 𝐾𝐻 = 𝐻𝐾 . Also for 

ℎ𝑘, ℎ1, 𝑘1 ∈ 𝐻𝐾 , we have 𝑘ℎ1 ∈ 𝐾𝐻 = 𝐻𝐾 , say 𝑘ℎ1 = ℎ2𝑘2, it follows that

(ℎ𝑘)(ℎ1𝑘1) = ℎ(𝑘ℎ1)𝑘1 = ℎ(ℎ2𝑘2)𝑘1 = (ℎℎ2)(𝑘2𝑘1) ∈ 𝐻𝐾

By the subgroup test, 𝐻𝐾 is a subgroup of 𝐺. Suppose conversely that (1) holds. Let 𝑘ℎ ∈ 𝐾𝐻  with 

𝑘 ∈ 𝐾 , ℎ ∈ 𝐻 . Since 𝐻  and 𝐾 are subgroups of 𝐺, we have ℎ−1 ∈ 𝐻 , and 𝑘−1 ∈ 𝐾 . Since 𝐻𝐾 is a 

subgroup of 𝐺, we have

𝑘ℎ = (ℎ−1𝑘−1)−1 ∈ 𝐻𝐾

Thus 𝐾𝐻 ⊆ 𝐻𝐾 , similarly, one can show 𝐻𝐾 ⊆ 𝐾𝐻 . Thus 𝐻𝐾 = 𝐾𝐻 . ☐

Proposition 3.11

Let 𝐻  and 𝐾 be subgroups of a group 𝐺. Then

1. If 𝐻 ⊲ 𝐺 or 𝐾 ⊲ 𝐺, then 𝐻𝐾 = 𝐾𝐻  is a subgroup of 𝐺
2. If 𝐻 ⊲ 𝐺 and 𝐾 ⊲ 𝐺, then 𝐾𝐻 ⊲ 𝐺

Proof of 1: Suppose 𝐻 ⊲ 𝐺 then

𝐻𝐾 = ⋃
𝑘∈𝐾

𝐻𝑘 = ⋃
𝑘∈𝐾

𝑘𝐻 = 𝐾𝐻

By lemma, 𝐻𝐾 = 𝐾𝐻  is a subgroup of 𝐺. ☐

Proof of 2: If 𝑔 ∈ 𝐺 and ℎ𝑘 ∈ 𝐻𝐾 , since 𝐻 ⊲ 𝐺 and 𝐾 ⊲ 𝐺 we have

𝑔−1(ℎ𝑘)𝑔 = (𝑔−1ℎ𝑔)(𝑔−1𝑘𝑔) ∈ 𝐻𝐾

Thus 𝑔−1𝐻𝐾𝑔 ⊆ 𝐻𝐾 and 𝐻𝐾 ⊲ 𝐺. ☐
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Definition 3.3.3

Let 𝐻  be a subgroup of a group 𝐺. The normalizer of 𝐻 , denoted by 𝑁𝐺(𝐻) is defined to be

𝑁𝐺(𝐻) = {𝑔 ∈ 𝐺 | 𝑔𝐻 = 𝐻𝑔}

We see that 𝐻 ⊲ 𝐺 if and only if 𝑁𝐺(𝐻) = 𝐺

Note

In the proof of the previous proposition, we do not need the full assumption that 𝐻 ⊲ 𝐺. We 

only need 𝑘𝐻 = 𝐻𝑘 for all 𝑘 ∈ 𝐾 , i.e. 𝑘 ∈ 𝑁𝐺(𝐻) Thus

Corollary 3.12

Let 𝐻  and 𝐾 be subgroups of a group 𝐺. If 𝐾 ⊆ 𝑁𝐺(𝐻) (or 𝐻 ⊆ 𝑁𝐺(𝐾)) then 𝐻𝐾 = 𝐾𝐻  is a 

subgroup of 𝐺.

Theorem 3.13

If 𝐻 ⊲ 𝐺 and 𝐾 ⊲ 𝐺 satisfy 𝐻 ∩ 𝐾 = {1}, then 𝐻𝐾 ≅ 𝐻 × 𝐾 .

Proof:

Claim: If 𝐻 ⊲ 𝐺 and 𝐾 ⊲ 𝐺 satisfy 𝐻 ∩ 𝐾 = {1} then ℎ𝑘 = 𝑘ℎ for all ℎ ∈ 𝐻  and 𝑘 ∈ 𝐾 .

Consider 𝑥 = ℎ𝑘(𝑘ℎ)−1 = ℎ𝑘ℎ−1𝑘−1. Note that 𝑘ℎ−1𝑘−1 ∈ 𝑘𝐻𝑘−1 = 𝐻  (since 𝐻 ⊲ 𝐺). Thus 𝑥 ∈ 𝐻 . 

Similarly, since ℎ𝑘ℎ−1 ∈ ℎ𝐾ℎ−1 = 𝐾 , we have 𝑥 ∈ 𝐾 . Since 𝑥 ∈ 𝐻 ∩ 𝐾 = {1}, we have 

ℎ𝑘ℎ−1𝑘−1 = 1 i.e. ℎ𝑘 = 𝑘ℎ.

Since 𝐻 ⊲ 𝐺, by proposition, 𝐻𝐾 is a subgroup of 𝐺. Define 𝜎 : 𝐻 × 𝐾 → 𝐻𝐾 by 𝜎(ℎ, 𝑘) = ℎ𝑘.

Claim: 𝜎 is an isomorphism.

Let (ℎ, 𝑘), (ℎ1, 𝑘1) ∈ 𝐻 × 𝐾 By claim 1, we have ℎ1𝑘 = 𝑘ℎ1. Thus

𝜎((ℎ, 𝑘) ⋅ (ℎ1, 𝑘1)) = 𝜎(ℎℎ1, 𝑘𝑘1) = ℎℎ1𝑘𝑘1 = ℎ𝑘ℎ1𝑘1 = 𝜎(ℎ, 𝑘) ⋅ 𝜎(ℎ1, 𝑘1)

Thus 𝜎 is a homomorphism. Note that by the definition of 𝐻𝐾 , 𝜎 is surjective. Also, if 

𝜎(ℎ, 𝑘) = 𝜎(ℎ1, 𝑘1), we have ℎ𝑘 = ℎ1𝑘1. Thus ℎ−1
1 ℎ = 𝑘1𝑘−1 ∈ 𝐻 ∩ 𝐾 = {1} Thus 

ℎ−1
1 ℎ = 1 = 𝑘1𝑘−1 i.e. ℎ1 = ℎ and 𝑘1 = 𝑘. Thus 𝜎 is injective. So 𝜎 is an isomorphism and we have 

𝐻𝐾 ≅ 𝐻 × 𝐾 . ☐

Corollary 3.14

Let 𝐺 be a finite group, and let 𝐻  and 𝐾 be normal subgroups such that 𝐻 ∩ 𝐾 = {1} and 

|𝐻||𝐾| = |𝐺|. Then 𝐺 ≅ 𝐻 × 𝐾 .

Proof:

|𝐻𝐾| = |𝐻||𝐾|
|𝐻 ∩ 𝐾|

= |𝐻||𝐾| = |𝐺|

Thus 𝐻𝐾 = 𝐺, and so a direct application of the theorem gives 𝐺 = 𝐻𝐾 ≅ 𝐻 × 𝐾 . ☐
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Example 3.3.7

Let 𝑚, 𝑛 ∈ ℕ with gcd(𝑚, 𝑛) = 1. Let 𝐺 be a cyclic group of order 𝑚𝑛. Write 𝐺 = ⟨𝑎⟩ with 

𝑜(𝑎) = 𝑚𝑛. Let 𝐻 = ⟨𝑎𝑛⟩ and 𝐾 = ⟨𝑎𝑚⟩. Thus |𝐻| = 𝑜(𝑎𝑛) = 𝑚 and |𝐾| = 𝑜(𝑎𝑚) = 𝑛. It 

follows that |𝐻||𝐾| = 𝑚𝑛 = |𝐺|. Since gcd(𝑚, 𝑛) = 1, by corollary, we have 𝐻 ∩ 𝐾 = {1}. 

Also, since 𝐺 is cyclic and thus abelian, we have 𝐻 ⊲ 𝐺 and 𝐾 ⊲ 𝐺. Then by corollary, we have 

𝐺 ≅ 𝐻 × 𝐾 , i.e. 𝐶𝑚𝑛 ≅ 𝐶𝑚 × 𝐶𝑛. Hence, to consider finite cyclic groups, it suffices to consider 

cyclic groups of prime power order.

4 Isomorphism Theorems

4.1 Quotient Groups

Remark

Let 𝐾 be a subgroup of 𝐺. Consider the set of right cosets of 𝐾 , i.e. {𝐾𝑎 | 𝑎 ∈ 𝐺}. To make it a 

group, a natural way is to define

𝐾𝑎 ⋅ 𝐾𝑏 = 𝐾𝑎𝑏 ∀𝑎, 𝑏 ∈ 𝐺 (∗)

Note that we could have 𝐾𝑎 = 𝐾𝑎1 and 𝐾𝑏 = 𝐾𝑏1 with 𝑎 ≠ 𝑎1 and 𝑏 ≠ 𝑏1, Thus in order for 

(∗) to make sense, a necessary condition is

𝐾𝑎 = 𝐾𝑎1 and 𝐾𝑏 = 𝐾𝑏1 ⟹ 𝐾𝑎𝑏 = 𝐾𝑎1𝑏1

In this case, we say that the multiplication is well-defined.

Lemma 4.1

Let 𝐾 be a subgroup of a group 𝐺, the following are equivalent:

1. 𝐾 ⊲ 𝐺
2. For 𝑎, 𝑏 ∈ 𝐺, the multiplication 𝐾𝑎 ⋅ 𝐾𝑏 = 𝐾𝑎𝑏 is well-defined.

Proof of (1 ⇒ 2): Let 𝐾𝑎 = 𝐾𝑎1 and 𝐾𝑏 = 𝐾𝑏1. Thus 𝑎𝑎−1
1 ∈ 𝐾 and 𝑏𝑏−1

1 ∈ 𝐾 . To get 

𝐾𝑎𝑏 = 𝐾𝑎1𝑏1, we need 𝑎𝑏(𝑎1𝑏1)
−1 ∈ 𝐾 . Note that since 𝐾 ⊲ 𝐺, we have 𝑎𝐾𝑎−1 = 𝐾 . Thus

𝑎𝑏(𝑎1𝑏1)
−1 = 𝑎𝑏𝑏−1

1 𝑎−1
1 = (𝑎𝑏𝑏−1

1 𝑎−1)(𝑎𝑎−1
1 ) ∈ 𝐾

Thus 𝐾𝑎𝑏 = 𝐾𝑎1𝑏1. ☐

Proof of (2 ⇒ 1): If 𝑎 ∈ 𝐺, to show 𝐾 ⊲ 𝐺, we need 𝑎𝑘𝑎−1 ∈ 𝐾 for all 𝑘 ∈ 𝐾 . Since 𝐾𝑎 = 𝐾𝑎 and 

𝐾𝑘 = 𝐾1, by (2), we have 𝐾𝑎𝑘 = 𝐾𝑎1 i.e. 𝐾𝑎𝑘 = 𝐾𝑎. It follows that 𝑎𝑘𝑎−1 ∈ 𝐾 . Thus 𝐾 ⊲ 𝐺. ☐

Proposition 4.2

Let 𝐾 ⊲ 𝐺 and write 𝐺/𝐾 = {𝐾𝑎 | 𝑎 ∈ 𝐺} for the set of all cosets of 𝐾 . Then

1. 𝐺/𝐾 is a group under the operation 𝐾𝑎 ∗ 𝐾𝑏 = 𝐾𝑎𝑏.

2. The mapping 𝜑 : 𝐺 → 𝐺/𝐾 given by 𝜑(𝑎) = 𝐾𝑎 is a surjective homomorphism.

3. If [𝐺 : 𝐾] is finite, then |𝐺/𝐾| = [𝐺 : 𝐾]. In particular, if |𝐺| is finite, then |𝐺/𝐾| = |𝐺|
|𝐾|
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Proof of 1: By other proposition, the operation is well defined and 𝐺/𝐾 is closed under operation. The 

identity of 𝐺/𝐾 is 𝐾 ⋅ 1 = 𝐾 . Also, the inverse of 𝐾𝑎 is 𝐾𝑎−1. Finally, by the associativity of 𝐺, we 

have

𝐾𝑎(𝐾𝑏𝐾𝑐) = (𝐾𝑎𝐾𝑏)𝐾𝑐.

It follows that 𝐺/𝐾 is a group. ☐

Proof of 2: 𝜑 is clearly surjective. Also, for 𝑎, 𝑏 ∈ 𝐺, we have

𝜑(𝑎)𝜑(𝑏) = 𝐾𝑎𝐾𝑏 = 𝐾𝑎𝑏 = 𝜑(𝑎𝑏)

so 𝜑 is a homomorphism. ☐

Proof of 3: If [𝐺 : 𝐾] is finite, by the definition of index, |𝐺/𝐾| = [𝐺 : 𝐾]. Also, if |𝐺| is finite, by 

Lagrange’s Theorem, |𝐺/𝐾| = [𝐺 : 𝐾] = |𝐺|
|𝐾| ☐

Definition 4.1.1

Let 𝐾 ⊲ 𝐺. The group 𝐺/𝐾 of all cosets of 𝐾 in 𝐺 is called the quotient group of 𝐺 by 𝐾 . Also, 

the mapping 𝜑 : 𝐺 → 𝐺/𝐾 given by 𝜑(𝑎) = 𝐾𝑎 is called the coset map.

Exercise 4.1.1

List all normal subgroups of 𝐷10 and all quotient groups of 𝐷10/𝐾 .

4.2 Isomorphism Theorems

Definition 4.2.1

Let 𝛼 : 𝐺 → 𝐻  be a group homomorphism. The kernel of 𝛼 is defined by

ker 𝛼 = {𝑔 ∈ 𝐺 | 𝛼(𝑔) = 1𝐻} ⊆ 𝐺

and the image of 𝛼 is defined by

im 𝛼 = 𝛼(𝐺) = {𝛼(𝑔) | 𝑔 ∈ 𝐺} ⊆ 𝐻

Proposition 4.3

Let 𝛼 : 𝐺 → 𝐻  be a group homomorphism

1. im 𝛼 is a subgroup of 𝐻
2. ker 𝛼 is a normal subgroup of 𝐺

Proof of 1: Note that 1𝐻 = 𝛼(1𝐺) ∈ im 𝛼. Also, for ℎ1 = 𝛼(𝑔1), ℎ2 = 𝛼(𝑔2) ∈ im 𝛼, we have

ℎ1ℎ2 = 𝛼(𝑔1)𝛼(𝑔2) = 𝛼(𝑔1𝑔2) ∈ im 𝛼

Also, by proposition, 𝛼(𝑔)−1 = 𝛼(𝑔−1) ∈ im 𝛼. By the subgroup test, im 𝛼 is a subgroup of 𝐻 . ☐

Proof of 2: For ker 𝛼, note that 𝛼(1𝐺) = 1𝐻 . Also, for 𝑘1, 𝑘2 ∈ ker 𝛼, then

𝛼(𝑘1𝑘2) = 𝛼(𝑘1)𝛼(𝑘2) = 1 ⋅ 1 = 1
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and

𝛼(𝑘−1
1 ) = 𝛼(𝑘1)

−1 = 1−1 = 1

By the subgroup test, ker 𝛼 is a subgroup of 𝐺. Note that if 𝑔 ∈ 𝐻  and 𝑘 ∈ ker 𝛼, then

𝛼(𝑔𝑘𝑔−1) = 𝛼(𝑔)𝛼(𝑘)𝛼(𝑔−1) = 𝛼(𝑔)1𝛼(𝑔)−1 = 1

Thus 𝑔(ker 𝛼)𝑔−1 ⊆ ker 𝛼. By the normality test, ker 𝛼 ⊲ 𝐺. ☐

Example 4.2.1

Consider the determinant map det : GL𝑛(ℝ) → ℝ∗ defined by 𝐴 ↦ det 𝐴. Then 

ker(det) = SL𝑛(ℝ). Thus, we get another proof that SL𝑛(ℝ) ⊲ GL𝑛(ℝ).

Example 4.2.2

Define the sign of a permutation 𝜎 ∈ 𝑆𝑛 by

sgn(𝜎) = {1 if 𝜎 is even
−1 if 𝜎 is odd

Note that sgn : 𝑆𝑛 → (±1, ⋅) defined by 𝜎 ↦ sgn(𝜎) is a homomorphism. Also, ker(sgn) = 𝐴𝑛 

Thus we have another proof that 𝐴𝑛 ⊲ 𝑆𝑛.

Theorem 4.4 First Isomorphism Theorem

Let 𝛼 : 𝐺 → 𝐻  be a group homomorphism. Then

𝐺/ ker 𝛼 ≅ im 𝛼

Proof: Let 𝐾 = ker 𝛼. Since 𝐾 ⊲ 𝐺, 𝐺/𝐾 is a group. Define the map

𝛼 : 𝐺/𝐾 ⟶ im 𝛼
𝐾𝑔 ⟼ 𝛼(𝑔)

Note that

𝐾𝑔 = 𝐾𝑔1 ⟺ 𝑔𝑔−1
1 ∈ 𝐾 ⟺ 𝛼(𝑔𝑔−1

1 ) = 1 ⟺ 𝛼(𝑔) = 𝛼(𝑔1)

Thus, 𝛼 is well-defined and injective. Also 𝛼 is clearly surjective. For 𝑔, ℎ ∈ 𝐺, we have

𝛼(𝐾𝑔𝐾ℎ) = 𝛼(𝐾𝑔ℎ) = 𝛼(𝑔ℎ) = 𝛼(𝑔)𝛼(ℎ) = 𝛼(𝐾𝑔)𝛼(𝐾ℎ)

Thus 𝛼 is a group isomorphism and we have 𝐺/ ker 𝛼 ≅ im 𝛼. ☐
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Remark

Let 𝛼 : 𝐺 → 𝐻  be a group homomorphism and 𝐾 = ker 𝛼. Let 𝜑 : 𝐺 → 𝐺/𝐾 be the coset map 

and let 𝛼 be defined as in the previous proof. We have the following diagram:

𝛼

𝜑
𝛼

𝐺 im 𝛼

𝐺/𝐾

Note that for 𝑔 ∈ 𝐺, we have

𝛼𝜑(𝑔) = 𝛼(𝜑(𝑔)) = 𝛼(𝐾𝑔) = 𝛼(𝑔)

Thus 𝛼 = 𝛼𝜑 on the other hand, if we have 𝛼 = 𝛼𝜑, then the action of 𝛼 is determined by 𝛼 and 

𝜑 as

𝛼(𝐾𝑔) = 𝛼(𝜑(𝑔)) = 𝛼𝜑(𝑔) = 𝛼(𝑔)

Thus 𝛼 is the only homomorphism 𝐺/𝐾 → 𝐻  satisfying 𝛼𝜑 = 𝛼.

Proposition 4.5

Let 𝛼 : 𝐺 → 𝐻  be group homomorphism and 𝐾 = ker 𝛼. Then 𝛼 factors uniquely as 𝛼 = 𝛼𝜑 

where 𝜑 : 𝑔 → 𝐺/𝐾 is the coset map and 𝛼 : 𝐺/𝐾 → 𝐻  is defined by 𝛼(𝐾𝑔) = 𝛼(𝑔). Note that 

𝜑 is surjective and 𝛼 is injective.

Example 4.2.3

We have seen that (ℤ, +) = ⟨±1⟩ and for 𝑛 ∈ ℕ, (ℤ𝑛, +) = ⟨[1]⟩ are cyclic groups. In the 

following, we will show that these are the only cyclic groups.

Let 𝐺 = ⟨𝑔⟩ be a cyclic group. Consider 𝛼 : (ℤ, +) → 𝐺 defined by 𝛼(𝑘) = 𝑔𝑘 for all 𝑘 ∈ ℤ, 

which is a group homomorphism. By the definition of ⟨𝑔⟩, 𝛼 is surjective. Note that 

ker 𝛼 = {𝑘 ∈ ℤ | 𝑔𝑘 = 1}, we have two cases:

1. If 𝑜(𝑔) = ∞, then ker 𝛼 = {0}. By the first isomorphism theorem, we have

𝐺 ≅ ℤ/{0} ≅ ℤ
2. If 𝑜(𝑔) = 𝑛, by proposition, ker 𝛼 = 𝑛ℤ. By the fist isomorphism theorem,

𝐺 ≅ ℤ/𝑛ℤ ≅ ℤ𝑛

By (1) and (2), we can conclude that if 𝐺 is cyclic, then 𝐺 ≅ ℤ or 𝐺 ≅ ℤ𝑛.
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Theorem 4.6 Second Isomorphism Theorem

Let 𝐻  and 𝐾 be subgroups of a group 𝐺 with 𝐾 ⊲ 𝐺. Then 𝐻𝐾 is a subgroup of 𝐺, 𝐾 ⊲ 𝐻𝐾 , 

𝐻 ∩ 𝐾 ⊲ 𝐻  and 𝐻𝐾/𝐾 ≅ 𝐻/𝐻 ∩ 𝐾 .

Proof: Since 𝐾 ⊲ 𝐺, by proposition, 𝐻𝐾 is a subgroup, 𝐻𝐾 = 𝐾𝐻  and 𝐾 ⊲ 𝐻𝐾 . Consider 

𝛼 : 𝐻 → 𝐻𝐾/𝐾 defined by 𝛼(ℎ) = 𝐾ℎ. (note that ℎ ∈ 𝐻 ⊆ 𝐻𝐾). Then 𝛼 is a homomorphism 

(exercise). Also, if 𝑥 ∈ 𝐻𝐾 = 𝐾𝐻 , say 𝑥 = 𝑘ℎ, then

𝐾𝑥 = 𝐾(𝑘ℎ) = 𝐾ℎ = 𝛼(ℎ)

Thus 𝛼 is surjective. Finally, by proposition,

ker 𝛼 = {ℎ ∈ 𝐻 | 𝐾ℎ = 𝐾} = {ℎ ∈ 𝐻 | ℎ ∈ 𝐾} = 𝐻 ∩ 𝐾

By the first isomorphism theorem,

𝐻/𝐻 ∩ 𝐾 ≅ 𝐻𝐾/𝐾

☐

Theorem 4.7 Third Isomorphism Theorem

Let 𝐾 ⊆ 𝐻 ⊆ 𝐺 be groups with 𝐾 ⊲ 𝐺 and 𝐻 ⊲ 𝐺. Then 𝐻/𝐾 ⊲ 𝐺/𝐾 and

(𝐺/𝐾)/(𝐻/𝐾) ≅ 𝐺/𝐻

Proof: Define 𝛼 : 𝐺/𝐾 → 𝐺/𝐻  by 𝛼(𝐾𝑔) = 𝐻𝑔 for all 𝑔 ∈ 𝐺. Note that if 𝐾𝑔 = 𝐾𝑔1, then 

𝑔𝑔−1
1 ∈ 𝐾 ⊆ 𝐻 . Thus 𝐻𝑔 = 𝐻𝑔1 and 𝛼 is well defined. Clearly, 𝛼 is surjective. Note that

ker 𝛼 = {𝐾𝑔 | 𝐻𝑔 = 𝐻} = {𝐾𝑔 | 𝑔 ∈ 𝐻} = 𝐻/𝐾

By the first isomorphism theorem,

(𝐺/𝐾)/(𝐻/𝐾) ≅ 𝐺/𝐻

☐

5 Group Actions

5.1 Cayley’s Theorem

Theorem 5.1 Cayley’s Theorem

If 𝐺 is a finite group of order 𝑛, then 𝐺 is isomorphic to a subgroup of 𝑆𝑛.

Proof: Let 𝐺 = ⟨𝑔1, …, 𝑔𝑛⟩ and let 𝑆𝐺 be the permutation group of 𝐺. By identifying 𝑔𝑖 with 𝑖, we see 

that 𝑆𝐺 ≅ 𝑆𝑛. Thus it suffices to find a injective homomorphism 𝜎 : 𝐺 → 𝑆𝐺. For 𝑎 ∈ 𝐺, define 

𝜇𝑎 : 𝐺 → 𝐺 by 𝜇𝑎(𝑔) = 𝑎𝑔 for all 𝑔 ∈ 𝐺. Note that 𝑎𝑔 = 𝑎𝑔1 implies 𝑔 = 𝑔1 and 𝑎(𝑎−1𝑔) = 𝑔. Hence 

𝜇𝑎 is a bijection and 𝜇𝑎 ∈ 𝑆𝐺. Define 𝜎 : 𝐺 → 𝑆𝐺 by 𝜎(𝑎) = 𝜇𝑎. For 𝑎, 𝑏 ∈ 𝐺, we have 𝜇𝑎𝜇𝑏 = 𝜇𝑎𝑏 

and 𝜎 is a homomorphism. Also, if 𝜇𝑎 = 𝜇𝑏, then 𝑎 = 𝜇𝑎(1) = 𝜇𝑏(1) = 𝑏. Thus, by the first 

isomorphism theorem, we have 𝐺 ≅ im 𝜎, a subgroup of 𝑆𝐺 ≅ 𝑆𝑛. ☐
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Example 5.1.1

Let 𝐻  be a subgroup of a group 𝐺 with [𝐺 : 𝐻] = 𝑚 < ∞. Let 𝑋 = {𝑔1𝐻, 𝑔2𝐻, …, 𝑔𝑚𝐻} be 

the set of all distinct left cosets of 𝐻  in 𝐺. For 𝑎 ∈ 𝐺, define 𝜆𝑎 : 𝑋 → 𝑋 by 𝜆𝑎(𝑔𝐻) = 𝑎𝑔𝐻  for 

all 𝑔𝐻 ∈ 𝑋. Note that 𝑎𝑔𝐻 = 𝑎𝑔1𝐻  implies that 𝑔𝐻 = 𝑔1𝐻  and 𝑎(𝑎−1𝑔𝐻) = 𝑔𝐻 . Hence 𝜆𝑎 is 

a bijection and thus 𝜆𝑎 ∈ 𝑆𝑋 . Consider 𝜏 : 𝐺 → 𝑆𝑋 defined by 𝜏(𝑎) = 𝜆𝑎. For 𝑎, 𝑏 ∈ 𝐺, we have 

𝜆𝑎𝑏 = 𝜆𝑎𝜆𝑏 and thus 𝜏  is a homomorphism. Note that if 𝑎 ∈ ker 𝜏 , then 𝜆𝑎 is the identity 

permutation. In particular, 𝑎𝐻 = 𝜆𝑎(𝐻) = 𝐻 . In particular, 𝑎 ∈ 𝐻 . Thus ker 𝜏 ⊆ 𝐻 .

Theorem 5.2 Extended Cayley’s Theorem

Let 𝐻  be a subgroup of a group 𝐺 with [𝐺 : 𝐻] = 𝑚 < ∞. If 𝐺 has no normal subgroup 

contained in 𝐻  except for {1}, then 𝐺 is isomorphic to a subgroup of 𝑆𝑚.

Proof: Let 𝑋 be the set of all distinct left cosets of 𝐻  in 𝐺. We have |𝑋| = 𝑚 and 𝑆𝑋 ≅ 𝑆𝑚. We have 

seen from the above example that there exist a group homomorphism 𝜏 : 𝐺 → 𝑆𝑋 with 

𝐾 = ker 𝜏 ⊆ 𝐻 . By the first isomorphism theorem, we have 𝐺/𝐾 ≅ im 𝜏 . Since 𝐾 ⊆ 𝐻  and 𝐾 ⊲ 𝐺, 

by the assumption, we have 𝐾 = {1}. It follows that 𝐺 ≅ im 𝜏 , a subgroup of 𝑆𝑋 ≅ 𝑆𝑚. ☐

Corollary 5.3

Let 𝐺 be a finite group and 𝑝 the smallest prime dividing |𝐺|. If 𝐻  is a subgroup of 𝐺 with 

[𝐺 : 𝐻] = 𝑝 then 𝐻 ⊲ 𝐺.

Proof: Let 𝑋 be the set of all distinct left cosets of 𝐻  in 𝐺. We have |𝑋| = 𝑝 and 𝑆𝑋 ≅ 𝑆𝑝. Let 

𝜏 : 𝐺 → 𝑆𝑋 ≅ 𝑆𝑝 be the group homomorphism defined in the above example with 𝐾 ≔ ker 𝜏 ⊆ 𝐻 . By 

the first isomorphism theorem, we have 𝐺/𝐾 ≅ im 𝜏 ⊆ 𝑆𝑝. Thus 𝐺/𝐾 is isomorphic to a subgroup of 

𝑆𝑝. By Lagrange’s Theorem, we have |𝐺/𝐾| ∣ 𝑝!. Also, since 𝐾 ⊆ 𝐻 , if [𝐻 : 𝐾] = 𝑘, then

|𝐺/𝐾| = |𝐺|
|𝐾|

= |𝐺|
|𝐻|

|𝐻|
|𝐾|

= 𝑝𝑘.

Thus 𝑝𝑘 ∣ 𝑝! and hence 𝑘 ∣ (𝑝 − 1)!. Since 𝑘 ∣ |𝐻|, which divides |𝐺| and 𝑝 is the smallest prime 

dividing |𝐺|, we see every prime divisor of 𝑘 must be ≥ 𝑝 unless 𝑘 = 1. Combining this with 

𝑘 ∣ (𝑝 − 1)!, this forces 𝑘 = 1, which implies 𝐾 = 𝐻 , thus 𝐻 ⊲ 𝐺. ☐

5.2 Group Actions

Definition 5.2.1

Let 𝐺 be a group and 𝑋 a non-empty set. A (left) group action of 𝐺 on 𝑋 is a mapping 

𝐺 × 𝑋 → 𝑋 denoted (𝑎, 𝑥) ↦ 𝑎 ⋅ 𝑥 such that

1. 1 ⋅ 𝑥 = 𝑥 for all 𝑥 ∈ 𝑋
2. 𝑎 ⋅ (𝑏 ⋅ 𝑥) = (𝑎𝑏) ⋅ 𝑥 for all 𝑎, 𝑏 ∈ 𝐺 and 𝑥 ∈ 𝑋

In this case, we say 𝐺 acts on 𝑋.
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Remark

Let 𝐺 be a group acting on a set 𝑋 ≠ ∅. For 𝑎, 𝑏 ∈ 𝐺 and 𝑥, 𝑦 ∈ 𝑋, by (1) and (2), we have

𝑎 ⋅ 𝑥 = 𝑏 ⋅ 𝑦 ⟺ (𝑏−1𝑎) ⋅ 𝑥 = 𝑦

In particular, we have 𝑎 ⋅ 𝑥 = 𝑎 ⋅ 𝑦 if and only if 𝑥 = 𝑦.

Example 5.2.1

If 𝐺 is group, let 𝐺 act on itself by conjugation. i.e. 𝑋 = 𝐺, by 𝑎 ⋅ 𝑥 = 𝑎𝑥𝑎−1 for all 𝑎, 𝑥 ∈ 𝐺. 

Note that

1 ⋅ 𝑥 = 1𝑥1−1 = 𝑥

and

𝑎 ⋅ (𝑏 ⋅ 𝑥) = 𝑎(𝑏𝑥𝑏−1)𝑎−1 = (𝑎𝑏)𝑥(𝑎𝑏)−1 = (𝑎𝑏) ⋅ 𝑥

So it is indeed a group action.

Remark

For 𝑎 ∈ 𝐺, define 𝜎𝑎 : 𝑋 → 𝑋 by 𝜎𝑎(𝑥) = 𝑎 ⋅ 𝑥 for all 𝑥 ∈ 𝑋. Then one can show

1. 𝜎𝑎 ∈ 𝑆𝑋 , the permutation group of 𝑋
2. The function 𝜃 : 𝐺 → 𝑆𝑋 give 𝜃(𝑎) = 𝜎𝑎 is a group homomorphism with 

ker 𝜃 = {𝑎 ∈ 𝐺 | 𝑎𝑥 = 𝑥 ∀𝑥 ∈ 𝑋}

Note that the group homomorphism 𝜃 : 𝐺 → 𝑆𝑋 gives an equivalent definition of group action 

of 𝐺 on 𝑋. If 𝑋 = 𝐺 with |𝐺| = 𝑛 and ker 𝜃 = {1}, the map 𝜃 : 𝐺 → 𝑆𝑛 shows that 𝐺 is 

isomorphic to a subgroup of 𝑆𝑛, which is Cayley’s Theorem. Thus, the notion of group action 

can be viewed as a generalization of the proof of Cayley’s Theorem.

Definition 5.2.2

Let 𝐺 be a group acting on 𝑋 ≠ ∅. Let 𝑥 ∈ 𝑋. We call

1. 𝐺 ⋅ 𝑥 = {𝑔 ⋅ 𝑥 | 𝑔 ∈ 𝐺} ⊆ 𝑋 The orbit of 𝑥
2. 𝑆(𝑥) = {𝑔 ∈ 𝐺 | 𝑔 ⋅ 𝑥 = 𝑥} ⊆ 𝐺 The stabilizer of 𝑥

Proposition 5.4

Let 𝐺 be a group acting on a set 𝑋 ≠ ∅ and let 𝑥 ∈ 𝑋. Then

1. 𝑆(𝑥) is a subgroup of 𝐺.

2. There exists a bijection from 𝐺 ⋅ 𝑥 to {𝑔𝑆(𝑥) | 𝑔 ∈ 𝐺} and thus |𝐺 ⋅ 𝑥| = [𝐺 : 𝑆(𝑥)]

Proof of 1: Since 1 ⋅ 𝑥 = 𝑥, we have 1 ∈ 𝑆(𝑥). Also, if 𝑔, ℎ ∈ 𝑆(𝑥), then

𝑔ℎ ⋅ (𝑥) = 𝑔 ⋅ (ℎ ⋅ 𝑥) = 𝑔 ⋅ 𝑥 = 𝑥

and
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𝑔−1 ⋅ 𝑥 = 𝑔−1 ⋅ (𝑔 ⋅ 𝑥) = (𝑔−1𝑔) ⋅ 𝑥 = 1 ⋅ 𝑥 = 𝑥

Thus 𝑔ℎ, 𝑔−1 ∈ 𝑆(𝑥). By the subgroup test, 𝑆(𝑥) is a subgroup of 𝐺. ☐

Proof of 2: Consider the map 𝜑 : 𝐺 ⋅ 𝑥 → {𝑔𝑆(𝑥) | 𝑔 ∈ 𝐺} defined by 𝜑(𝑔 ⋅ 𝑥) = 𝑔𝑆(𝑥). Note that

𝑔 ⋅ 𝑥 = ℎ ⋅ 𝑥 ⟺ (ℎ−1𝑔) ⋅ 𝑥 = 𝑥 ⟺ ℎ−1𝑔 ∈ 𝑆(𝑥) ⟺ ℎ𝑆(𝑥) = 𝑔𝑆(𝑥)

Thus 𝜑 is well-defined and injective. Since 𝜑 is clearly surjective, 𝜑 is a bijection. It follows that

|𝐺 ⋅ 𝑥| = |{𝑔𝑆(𝑥) | 𝑔 ∈ 𝐺}| = [𝐺 : 𝑆(𝑥)]

☐

Theorem 5.5 Orbit Decomposition Theorem

Let 𝐺 be a group acting on a finite set 𝑋 ≠ ∅. Let

𝑋𝑓 = {𝑥 ∈ 𝑋 | 𝑎 ⋅ 𝑥 = 𝑥 ∀𝑎 ∈ 𝐺}

(Note that 𝑥 ∈ 𝑋𝑓  iff |𝐺 ⋅ 𝑥| = 1) Let 𝐺 ⋅ 𝑥1, 𝐺 ⋅ 𝑥2, …, 𝐺 ⋅ 𝑥𝑛 denote the distinct non-singleton 

orbits (i.e. |𝐺 ⋅ 𝑥𝑖| > 1) Then

|𝑋| = |𝑋𝑓 | + ∑
𝑛

𝑖=1
[𝐺 : 𝑆(𝑥𝑖)]

Proof: Note that for 𝑎, 𝑏 ∈ 𝐺 and 𝑥, 𝑦 ∈ 𝑋,

𝑎 ⋅ 𝑥 = 𝑏 ⋅ 𝑦 ⟺ (𝑏−1𝑎) ⋅ 𝑥 = 𝑦 ⟺ 𝑦 ∈ 𝐺 ⋅ 𝑥 ⟺ 𝐺 ⋅ 𝑦 = 𝐺 ⋅ 𝑥

Thus two orbits are either disjoint, or the same. It follows that the orbits form a disjoint union of 𝑋. 

Since 𝑥 ∈ 𝑋𝑓  iff |𝐺 ⋅ 𝑥| = 1, the set 𝑋 ∖ 𝑋𝑓  contains all non-singleton orbits, which are disjoint. Thus 

by proposition 5.4, we have

|𝑋| = |𝑋𝑓 | + ∑
𝑛

𝑖=1
|𝐺 ⋅ 𝑥𝑖|

= |𝑋𝑓 | + ∑
𝑛

𝑖=1
[𝐺 : 𝑆(𝑥𝑖)]

☐
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Example 5.2.2

Let 𝐺 be a group acting on itself by conjugation i.e. 𝑔 ⋅ 𝑥 = 𝑔𝑥𝑔−1. Then

𝐺𝑓 = {𝑥 ∈ 𝐺 | 𝑔𝑥𝑔−1 = 𝑥 ∀𝑔 ∈ 𝐺}

= {𝑥 ∈ 𝐺 | 𝑔𝑥 = 𝑥𝑔 ∀𝑔 ∈ 𝐺}
= 𝑍(𝐺)

Also, for 𝑥 ∈ 𝐺,

𝑆(𝑥) = {𝑔 ∈ 𝐺 | 𝑔𝑥𝑔−1 = 𝑥} = {𝑔 ∈ 𝐺 | 𝑔𝑥 = 𝑥𝑔}

This set is called the centralizer of 𝑥 and is denoted by 𝑆(𝑥) = 𝐶𝐺(𝑥). Finally in this case, the 

orbit

𝐺 ⋅ 𝑥 = {𝑔𝑥𝑔−1 | 𝑔 ∈ 𝐺}

is called the conjugacy class of 𝑥.

By Theorem 5.5,

Corollary 5.6 Class Equation

Let 𝐺 be a finite group and let {𝑔𝑥1𝑔−1 | 𝑔 ∈ 𝐺}, …, {𝑔𝑥𝑛𝑔−1 | 𝑔 ∈ 𝐺} denote the distinct non-

singleton conjugacy classes, then

|𝐺| = |𝑍(𝐺)| + ∑
𝑛

𝑖=1
[𝐺 : 𝐶𝐺(𝑥𝑖)]

Lemma 5.7

Let 𝑝 be a prime and 𝑚 ∈ ℕ. Let 𝐺 be a group of order 𝑝𝑚 acting on a finite set 𝑋 ≠ ∅. Let 𝑋𝑓  

be defined as in Theorem 5.5. Then we have

|𝑋| ≡ |𝑋𝑓 | (mod 𝑝)

Proof: By Theorem 5.5, we have

|𝑋| = |𝑋𝑓 | + ∑
𝑛

𝑖=1
[𝐺 : 𝑆(𝑥𝑖)] with [𝑔 : 𝑆(𝑥𝑖)] > 1

Since [𝐺 : 𝑆(𝑥𝑖)] divides |𝐺| = 𝑝𝑚 and [𝐺 : 𝑆(𝑥𝑖)] > 1. We have 𝑝 ∣ [𝐺 : 𝑆(𝑥𝑖)] for all 𝑖. It follows that

|𝑋| ≡ |𝑋𝑓 | (mod 𝑝)

☐
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Theorem 5.8 Cauchy’s Theorem

Let 𝑝 be a prime and 𝐺 a finite group. If 𝑝 ∣ |𝐺|, then 𝐺 contains an element of order 𝑝.

Proof: Define 𝑋 = {(𝑎1, …, 𝑎𝑝) | 𝑎𝑖 ∈ 𝐺 and 𝑎1⋯𝑎𝑝 = 1}. Since 𝑎𝑝 is uniquely determined by 

𝑎1, …, 𝑎𝑝−1, if |𝐺| = 𝑛, we have |𝑋| = 𝑛𝑝−1. Since 𝑝 ∣ 𝑛, we have |𝑋| ≡ 0 (mod 𝑝). Let the group 

ℤ𝑝 = (ℤ𝑝, +) acts on 𝑋 by “cycling”, i.e. for 𝑘 ∈ ℤ𝑝,

𝑘 ⋅ (𝑎1, …, 𝑎𝑝) = (𝑎𝑘+1, …, 𝑎𝑝, 𝑎1, …, 𝑎𝑘)

One can verify that this action is well defined. Let 𝑋𝑓  be defined as in theorem 5.5. Then 

(𝑎1, …, 𝑎𝑝) ∈ 𝑋𝑓  iff 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑝. Clearly (1, 1, …, 1) ∈ 𝑋𝑓  and hence |𝑋𝑓 | ≥ 1. Since |ℤ𝑝| = 𝑝, 

by lemma 5.7, we have

|𝑋𝑓 | ≡ |𝑋| ≡ 0 (mod 𝑝)

Since |𝑋𝑓 | ≡ 0 (mod 𝑝) and |𝑋𝑓 | ≥ 1. It follows that |𝑋𝑓 | ≥ 𝑝. Therefore, there exists 𝑎 ≠ 1 st 

(𝑎, .., 𝑎) ∈ 𝑋𝑓  which implies that 𝑎𝑝 = 1. Since 𝑝 is prime and 𝑎 ≠ 1, the order of 𝑎 is 𝑝. ☐

6 Sylow Theorems

6.1 𝑝-groups

Definition 6.1.1

Let 𝑝 be a prime. A group in which every element has order of a non-negative power of 𝑝 is 

called a 𝑝-group

Remark

As a direct consequence of Cauchy’s Theorem we have

Corollary 6.1

A finite group 𝐺 is a 𝑝-group if and only if |𝐺| is a power of 𝑝

Lemma 6.2

The center 𝑍(𝐺) of a non-trivial finite 𝑝-group 𝐺 contains more than one element.

Proof: The class equation of 𝐺 (Cor 5.6) states that

|𝐺| = |𝑍(𝐺)| + ∑
𝑚

𝑖=1
[𝐺 : 𝐶𝐺(𝑥𝑖)]

where [𝐺 : 𝐶𝐺(𝑥𝑖)] > 1. Since 𝐺 is a 𝑝-group, by Cor 6.1, 𝑝 ∣ |𝐺|. By lemma 5.7, 

|𝑍(𝐺)| ≡ |𝐺| ≡ 0 (mod 𝑝). It follows that 𝑝 ∣ |𝑍(𝐺)|. Since 1 ∈ 𝑍(𝐺) and |𝑍(𝐺)| ≥ 1, 𝑍(𝐺) has at 

least 𝑝 elements. ☐
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Recall

If 𝐻  is a subgroup of a group 𝐺, then 𝑁𝐺(𝐻) = {𝑔 ∈ 𝐺 | 𝑔𝐻𝑔−1 = 𝐻} is the normalizer of 𝐻  

in 𝐺. In particular, 𝐻 ⊲ 𝑁𝐺(𝐻).

Lemma 6.3

If 𝐻  is a 𝑝-subgroup of a finite group 𝐺, then

[𝑁𝐺(𝐻) : 𝐻] ≡ [𝐺 : 𝐻] (mod 𝑝)

Proof: Let 𝑋 be the set of all left cosets of 𝐻  in 𝐺. Hence |𝑋| = [𝐺 : 𝐻]. Let 𝐻  act on 𝑋 by left 

multiplication. Then for 𝑥 ∈ 𝐺, we have

𝑥𝐻 ∈ 𝑋𝑓 ⟺ ℎ𝑥𝐻 = 𝑥𝐻 ∀ℎ ∈ 𝐻

⟺ 𝑥−1ℎ𝑥𝐻 = 𝐻 ∀ℎ ∈ 𝐻
⟺ 𝑥−1𝐻𝑥 = 𝐻
⟺ 𝑥 ∈ 𝑁𝐺(𝐻)

Thus |𝑋𝑓 | is the number of cosets 𝑥𝐻  with 𝑥 ∈ 𝑁𝐺(𝐻) and hence |𝑋𝑓 | = [𝑁𝐺(𝐻) : 𝐻]. By lemma 

5.7,

[𝑁𝐺(𝐻) : 𝐻] = |𝑋𝑓 | ≡ |𝑋| = [𝐺 : 𝐻] (mod 𝑝)

☐

Corollary 6.4

Let 𝐻  be a 𝑝-subgroup of a finite group 𝐺. If 𝑝 ∣ [𝐺 : 𝐻] then 𝑝 ∣ [𝑁𝐺(𝐻) : 𝐻] and 𝑁𝐺(𝐻) ≠ 𝐻 .

Proof: Since 𝑝 ∣ [𝐺 : 𝐻], by lemma 6.3, we have

[𝑁𝐺(𝐻) : 𝐻] ≡ [𝐺 : 𝐻] ≡ 0 (mod 𝑝)

Since 𝑝 ∣ [𝑁𝐺(𝐻) : 𝐻] and [𝑁𝐺(𝐻) : 𝐻] ≥ 1, we have [𝑁𝐺(𝐻) : 𝐻] ≥ 𝑝. Thus 𝑁𝐺(𝐻) ≠ 𝐻 . ☐

6.2 Three Sylow Theorems

Recall

Cauchy’s theorem states that if 𝑝 ∣ |𝐺|, then 𝐺 contains an element of order 𝑝. Thus |⟨𝑎⟩| = 𝑝. 

The following first Sylow Theorem can be viewed as a generalization of Cauchy’s Theorem.

Theorem 6.5 First Sylow Theorem

Let 𝐺 be a group of order 𝑝𝑛𝑚 where 𝑝 is a prime, 𝑛 ≥ 1 and gcd(𝑝, 𝑚) = 1. Then 𝐺 contains a 

subgroup of order 𝑝𝑖 for all 1 ≤ 𝑖 ≤ 𝑛. Moreover, every subgroup of 𝐺 of order 𝑝𝑖 (𝑖 < 𝑛) is 

normal in some subgroup of order 𝑝𝑖+1.
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Proof: We prove this theorem by induction on 𝑖. For 𝑖 = 1, since 𝑝 ∣ |𝐺|, by Cauchy’s theorem, 𝐺 

contains an element 𝑎 of order 𝑝, i.e. |⟨𝑎⟩| = 𝑝. Suppose that the statement holds for some 1 ≤ 𝑖 < 𝑛. 

Say 𝐻  is a subgroup of 𝐺 of order 𝑝𝑖. Then 𝑝 ∣ [𝐺 : 𝐻], by Cor 6.4, 𝑝 ∣ [𝑁𝐺(𝐻) : 𝐻] and 

[𝑁𝐺(𝐻) : 𝐻] ≥ 𝑝, 𝑝 ∣ [𝐺 : 𝐻]. Then by Cauchy’s theorem, 𝑁𝐺(𝐻)/𝐻  contains a subgroup of order 𝑝. 

Such a group is of the form 𝐻1/𝐻 , where 𝐻1 is a subgroup of 𝑁𝐺(𝐻) containing 𝐻 . Since 

𝐻 ⊲ 𝑁𝐺(𝐻), we have 𝐻 ⊲ 𝐻1. Finally, |𝐻1| = |𝐻||𝐻1/𝐻| = 𝑝𝑖 ⋅ 𝑝 = 𝑝𝑖+1. ☐

Definition 6.2.1

A subgroup 𝑃  of a group 𝐺 is said to be a Sylow 𝑝-subgroup of 𝐺 if 𝑃  is a maximal 𝑝-group of 𝐺 

i.e. if 𝑃 ⊆ 𝐻 ⊆ 𝐺 with 𝐻  a 𝑝-group, then 𝑃 = 𝐻 .

As a direct consequence of theorem 6.5,

Corollary 6.6

Let 𝐺 be a group of order 𝑝𝑛𝑚 where 𝑝 is a prime, 𝑛 ≥ 1 and gcd(𝑝, 𝑚) = 1. Let 𝐻  be a 𝑝-

subgroup of 𝐺.

1. 𝐻  is a Sylow 𝑝-subgroup iff |𝐻| = 𝑝𝑛

2. Every conjugate of a Sylow 𝑝-subgroup is a Sylow 𝑝-subgroup.

3. If there is only one Sylow 𝑝-subgroup 𝑃 , then 𝑃 ⊲ 𝐺.

Theorem 6.7 Second Sylow Theorem

If 𝐻  is a 𝑝-subgroup of a finite group 𝐺, and 𝑃  is any Sylow 𝑝-subgroup of 𝐺, then there exists 

𝑔 ∈ 𝐺 such that 𝐻 ⊆ 𝑔𝑃𝑔−1. In particular, any two Sylow 𝑝-subgroups are conjugate.

Proof: Let 𝑋 be the set of all left cosets of 𝑃  in 𝐺, and let 𝐻  act on 𝑋 by left multiplication. By lemma 

5.7, we have |𝑋𝑓 | ≡ |𝑋| = [𝐺 : 𝑃 ] (mod 𝑝). Since 𝑝 ∤ [𝐺 : 𝑃 ], we have |𝑋𝑓 | ≠ 0. Thus there exists 

𝑔𝑃 ∈ 𝑋𝑓  for some 𝑔 ∈ 𝐺. Note that

𝑔𝑃 ∈ 𝑋𝑓 ⟺ ℎ𝑔𝑃 = 𝑔𝑃 ∀ℎ ∈ 𝐻

⟺ 𝑔−1ℎ𝑔𝑃 = 𝑃 ∀ℎ ∈ 𝐻
⟺ 𝑔−1𝐻𝑔 ⊆ 𝑃
⟺ 𝐻 ⊆ 𝑔𝑃𝑔−1

If 𝐻  is Sylow 𝑝-subgroup, then |𝐻| = |𝑃 | = |𝑔𝐻𝑔−1|, thus 𝐻 = 𝑔𝑃𝑔−1. ☐

Theorem 6.8 Third Sylow Theorem

If 𝐺 is a finite group and 𝑝 a prime with 𝑝 ∣ |𝐺|, then the number of Sylow 𝑝-subgroups of 𝐺 

divides |𝐺| and is of the form 𝑘𝑝 + 1 for some 𝑘 ∈ ℕ ∪ {0}.

Proof: By theorem 6.7, the number of Sylow 𝑝-subgroups of 𝐺 is the number of conjugates of any of 

them, say 𝑃 . This number is [𝐺 : 𝑁𝐺(𝑃 )]. Which is a divisor of |𝐺|. Let 𝑋 be the set of all Sylow 𝑝-

subgroups of 𝐺 and let 𝑃  act on 𝑋 by conjugation. Then 𝑄 ∈ 𝑋𝑓  iff 𝑔𝑄𝑔−1 = 𝑄 for all 𝑔 ∈ 𝑃 . The 

latter condition holds iff 𝑃 ⊆ 𝑁𝐺(𝑄). Both 𝑃  and 𝑄 are Sylow 𝑝-subgroups of 𝐺 and hence 𝑁𝐺(𝑄). 
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Thus by Cor 6.6, they are conjugate in 𝑁𝐺(𝑄). Since 𝑄 ⊲ 𝑁𝐺(𝑄), this can only occur if 𝑄 = 𝑃  and 

𝑋𝑓 = {𝑃}. By lemma 5.7, |𝑋| ≡ |𝑋𝑓 | ≡ 1(mod 𝑝). Thus |𝑋| = 𝑘𝑝 + 1 for some 𝑘 ∈ ℕ ∪ {0}. ☐

Remark

Suppose that 𝐺 is a group with |𝐺| = 𝑝𝑛𝑚 and gcd(𝑝, 𝑚) = 1. Let 𝑛𝑝 be the number of 𝑝-

subgroups of 𝐺. By the third Sylow theorem, we have 𝑛𝑝 ∣ 𝑝𝑛𝑚 and 𝑛𝑝 ≡ 1(mod 𝑝). Since 

𝑝 ∤ 𝑛𝑝, we have 𝑛𝑝 ∣ 𝑚.

Example 6.2.1

Claim: every group of order 15 is cyclic.

Let 𝑛𝑝 be the number of Sylow 𝑝-subgroups of 𝐺. By the third Sylow theorem, we have 𝑛3 ∣ 5 

and 𝑛3 ≡ 1(mod 3). Thus 𝑛3 = 1. Similarly, we have 𝑛5 ∣ 3 and 𝑛5 ≡ 1(mod 5), Thus 𝑛5 = 1. It 

follows that there is only one Sylow 3-subgroup and Sylow 5-subgroup, say 𝑃3 and 𝑃5 

respectively. Thus 𝑃3, 𝑃5 ⊲ 𝐺. Consider |𝑃3 ∩ 𝑃5|, which divides 3 and 5. Thus |𝑃3 ∩ 𝑃5| = 1 and 

𝑃3 ∩ 𝑃5 = {1}. Also |𝑃3𝑃5| = 15 = |𝐺| Thus

𝐺 ≅ 𝑃3 × 𝑃5 ≅ ℤ3 × ℤ5 ≅ ℤ15
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Example 6.2.2

Claim: there are two isomorphism classes of groups of order 21.

Let 𝐺 be a group of order 21 = 3 ⋅ 7. Let 𝑛𝑝 be the number of Sylow 𝑝-subgroups of 𝐺. By the 

third Sylow theorem, we have 𝑛3 ∣ 7 and 𝑛3 ≡ 1(mod 3). Thus 𝑛3 = 1 or 7. Also we have 𝑛7 ∣ 3 

and 𝑛7 ≡ 1(mod 7). Thus 𝑛7 = 1. It follows that 𝐺 has a unique Sylow 7-subgroup, say 𝑃7. Note 

that 𝑃7 ⊲ 𝐺 and 𝑃7 is cyclic, say 𝑃7 = ⟨𝑥 : 𝑥7 = 1⟩. Let 𝐻  be a Sylow 3-subgroup. Since 

|𝐻| = 3, 𝐻  is cyclic and 𝐻 = ⟨𝑦 : 𝑦3 = 1⟩. Since 𝑃7 ⊲ 𝐺, we have 𝑦𝑥𝑦−1 = 𝑥𝑖 for some 

0 ≤ 𝑖 ≤ 6. It follows that

𝑥 = 𝑦3𝑥𝑦−3 = 𝑦2(𝑦𝑥𝑦−1)𝑦−2 = 𝑦2𝑥𝑖𝑦−2 = 𝑦(𝑦𝑥𝑖𝑦−1)𝑦−1 = 𝑦𝑥𝑖2𝑦−1 = 𝑥𝑖3

Since 𝑥𝑖3 = 𝑥 and 𝑥7 = 1, we have 𝑖3 − 1 ≡ 0(mod 7). Since 0 ≤ 𝑖 ≤ 6, we have 𝑖 = 1, 2, 4.

1. If 𝑖 = 1, then 𝑦𝑥𝑦−1 = 𝑥, i.e. 𝑦𝑥 = 𝑥𝑦. Thus 𝐺 is an abelian group. Since 𝑃3 ⊲ 𝐺, 𝑃7 ⊲ 𝐺, 

𝑃3 ∩ 𝑃7 = {1} and |𝐺| = |𝑃3𝑃7|, we have

𝐺 ≅ 𝑃3 × 𝑃7 ≅ ℤ3 × ℤ7 ≅ ℤ21

2. If 𝑖 = 2, then 𝑦𝑥𝑦−1 = 𝑥2. Thus

𝐺 = {𝑥𝑖𝑦𝑗 : 0 ≤ 𝑖 ≤ 6, 0 ≤ 𝑗 ≤ 2, 𝑦𝑥𝑦−1 = 𝑥2}
3. If 𝑖 = 4, then 𝑦𝑥𝑦−1 = 𝑥4. Note that

𝑦2𝑥𝑦−2 = 𝑦(𝑦𝑥𝑦−1)𝑦−1

= 𝑦𝑥4𝑦−1

= 𝑥16 = 𝑥2

Note that 𝑦2 is also a generator of 𝐻 . Thus by replacing 𝑦 by 𝑦2, we get back to case 2. It follows 

that there are two isomorphism classes of groups of order 21.

7 Finite Abelian Groups

7.1 Primary Decomposition

Notation

Let 𝐺 be a group and 𝑚 ∈ ℤ we define

𝐺(𝑚) = {𝑔 ∈ 𝐺 | 𝑔𝑚 = 1}

Proposition 7.1

Let 𝐺 be an abelian group. Then 𝐺(𝑚) is a subgroup of 𝐺.

Proof: We have 1 = 1𝑚 ∈ 𝐺(𝑚). Also if 𝑔, ℎ ∈ 𝐺(𝑚), since 𝐺 is abelian, we have (𝑔ℎ)𝑚 = 𝑔𝑚ℎ𝑚 = 1 

and thus 𝑔ℎ ∈ 𝐺(𝑚). Finally, if 𝑔 ∈ 𝐺(𝑚), we have

(𝑔−1)𝑚 = 𝑔−𝑚 = (𝑔𝑚)−1 = 1
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and thus 𝑔−1 ∈ 𝐺(𝑚). By the subgroup test, 𝐺(𝑚) is a subgroup of 𝐺. ☐

Proposition 7.2

Let 𝐺 be a finite abelian group with |𝐺| = 𝑚𝑘 with gcd(𝑚, 𝑘) = 1. Then

1. 𝐺 ≅ 𝐺(𝑚) × 𝐺(𝑘)

2. |𝐺(𝑚)| = 𝑚 and |𝐺(𝑘)| = 𝑘

Proof of 1: Since 𝐺 is abelian, we have 𝐺(𝑚) ⊲ (𝐺) and 𝐺(𝑘) ⊲ 𝐺. Also, since gcd(𝑚, 𝑘) = 1, there 

exist 𝑥, 𝑦 ∈ ℤ such that 1 = 𝑚𝑥 + 𝑘𝑦
Claim: 𝐺(𝑚) ∩ 𝐺(𝑘) = {1}
If 𝑔 ∈ 𝐺(𝑚) ∩ 𝐺(𝑘), then 𝑔𝑚 = 1 = 𝑔𝑘. We have

𝑔 = 𝑔𝑚𝑥+𝑘𝑦 = (𝑔𝑚)𝑥(𝑔𝑘)7 = 1

Claim: 𝐺 = 𝐺(𝑚)𝐺(𝑘)

If 𝑔 ∈ 𝐺, then

1 = 𝑔𝑚𝑘 = (𝑔𝑚)𝑘 = (𝑔𝑘)𝑚

It follows that 𝑔𝑘 ∈ 𝐺(𝑚) and 𝑔𝑚 ∈ 𝐺(𝑘). Thus

𝑔 = 𝑔𝑚𝑥+𝑘𝑦 = (𝑔𝑘)𝑦(𝑔𝑚)𝑥 ∈ 𝐺(𝑚)𝐺(𝑘)

Combining both claims, by Theorem 3.13, we have

𝐺 ≅ 𝐺(𝑚)𝐺(𝑘)

☐

Proof of 2: Write |𝐺(𝑚)| = 𝑚′ and |𝐺(𝑘)| = 𝑘′. By (1), we have 𝑚𝑘 = |𝐺| = 𝑚′𝑘′

Claim: gcd(𝑚, 𝑘′) = 1
Suppose that gcd(𝑚, 𝑘′) ≠ 1. Then there exists a prime 𝑝 such that 𝑝 ∣ 𝑚 and 𝑝 ∣ 𝑘′. By Cauchy’s 

theorem, there exists 𝑔 ∈ 𝐺(𝑘) with 𝑜(𝑔) = 𝑝. Since 𝑝 ∣ 𝑚, we have 𝑔𝑚 = (𝑔𝑝)
𝑚
𝑝 = 1, i.e. 𝑔 ∈ 𝐺(𝑚). By 

(1), we have 𝑔 ∈ 𝐺(𝑚) ∩ 𝐺(𝑘) = {1}, which gives a contradiction since 𝑜(𝑔) = 𝑝. Thus we have 

gcd(𝑚, 𝑘′) = 1. Note that since 𝑚 ∣ 𝑚′𝑘′ and gcd(𝑚, 𝑘′) = 1, we have 𝑚 ∣ 𝑚′. Similarly, we have 

𝑘 ∣ 𝑘′. Since 𝑚𝑘 = 𝑚′𝑘′, it follows that 𝑚 = 𝑚′ and 𝑘 = 𝑘′. ☐

As a direct consequence of proposition 7.2, we have

Theorem 7.3 Primary Decomposition Theorem

Let 𝐺 be a finite abelian group with |𝐺| = 𝑝𝑛1
1 ⋯𝑝𝑛𝑘

𝑘  where 𝑝1, …, 𝑝𝑘 are distinct primes and 

𝑛1, …, 𝑛𝑘 ∈ ℕ. Then we have

1. 𝐺 ≅ 𝐺(𝑝𝑛1
1 ) × ⋯ × 𝐺(𝑝𝑛𝑘

𝑘 )

2. |𝐺(𝑝𝑛𝑖
𝑖 )| = 𝑝𝑛𝑖

𝑖 (1 ≤ 𝑖 ≤ 𝑘).
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Example 7.1.1

Let 𝐺 = ℤ∗
13. Then |𝐺| = 12 = 223. Note that

𝐺(3) = {𝑎 ∈ ℤ∗
13 | 𝑎3 = 1} = {1, 3, 9}

𝐺(4) = {𝑎 ∈ ℤ∗
13 | 𝑎4 = 1} = {1, 5, 8, 12}

By theorem 7.3, we have

ℤ∗
13 ≅ {1, 5, 8, 12} × {1, 3, 9}

7.2 Structure Theorem of Finite Abelian Groups

We have seen that if |𝐺| = 𝑝 (a prime), then 𝐺 ≅ 𝐶𝑝. Also, if |𝐺| = 𝑝2, then 𝐺 ≅ 𝐶𝑝2  or 𝐺 ≅ 𝐶𝑝 × 𝐶𝑝.

Question How about abelian groups of order 𝑝3, 𝑝4 and 𝑝𝑛 for general 𝑛 ∈ ℕ.

Proposition 7.4

Let 𝐺 be a finite abelian 𝑝-group that contains only one subgroup of order 𝑝, then 𝐺 is cyclic. In 

other words, if a finite abelian 𝑝-group 𝐺 is not cyclic, then 𝐺 has at least two subgroups of 

order 𝑝.

Proof: Let 𝑦 ∈ 𝐺 be of maximum order, i.e. 𝑜(𝑦) ≥ 𝑜(𝑥) ∀𝑥 ∈ 𝐺.

Claim: 𝐺 = ⟨𝑦⟩.
Suppose that 𝐺 ≠ ⟨𝑦⟩. Then the quotient group 𝐺/⟨𝑦⟩ is a nontrivial 𝑝-group, which contains an 

element 𝑧 of order 𝑝 by Cauchy’s theorem. In particular 𝑧 ≠ 1. Consider the coset map 𝜋 : 𝐺 → 𝐺/⟨𝑦⟩. 
Let 𝑥 ∈ 𝐺 such that 𝜋(𝑥) = 𝑧. Since 𝜋(𝑥𝑝) = 𝜋(𝑥)𝑝 = 𝑧𝑝 = 1, we see that 𝑥𝑝 ∈ ⟨𝑦⟩. Thus 𝑥𝑝 = 𝑦𝑚 for 

some 𝑚 ∈ ℤ. Two cases:

1. If 𝑝 ∤ 𝑚 since 𝑜(𝑦) = 𝑝𝑟 for some 𝑟 ∈ ℕ, by prop 2.11, 𝑜(𝑦𝑚) = 𝑜(𝑦). Since 𝑦 is of maximum 

order, we have 𝑜(𝑥𝑝) < 𝑜(𝑥) ≤ 𝑜(𝑦) = 𝑜(𝑦𝑚) = 𝑜(𝑥𝑝) which is a contradiction.

2. If 𝑝 ∣ 𝑚, then 𝑚 = 𝑝𝑘 for some 𝑘 ∈ ℤ. Thus we have 𝑥𝑝 = 𝑦𝑚 = 𝑦𝑝𝑘. Since 𝐺 is abelian, we have 

(𝑥𝑦−𝑘)𝑝 = 1. Thus 𝑥𝑦−𝑘 belongs to the one and only subgroup of order 𝑝, say 𝐻 . On the other 

hand, the cyclic group ⟨𝑦⟩ contains a subgroup of order 𝑝, which must be the one and only 𝐻 . 

Thus 𝑥𝑦−𝑘 ∈ ⟨𝑦⟩, which implies that 𝑥 ∈ ⟨𝑦⟩. It follows that 𝑧 = 𝜋(𝑥) = 1, a contradiction.

By combining the above two cases, we see that 𝐺 = ⟨𝑦⟩. ☐

Proposition 7.5

Let 𝐺 ≠ {1} be a finite abelian 𝑝-group. Let 𝐶 be a cyclic subgroup of maximum order. Then 𝐺 

contains a subgroup 𝐵 such that

𝐺 = 𝐶𝐵 and 𝐶 ∩ 𝐵 = {1}

Theorem 7.6

Let 𝐺 ≠ 1 be a finite abelian 𝑝-group. Then 𝐺 is isomorphic to a direct product of cyclic groups.
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Proof: By prop 7.5, there exists a cyclic group 𝐶1 and a subgroup 𝐵1 of 𝐺 such that 𝐺 ≅ 𝐶1 × 𝐵1. Since 

|𝐵1| ∣ |𝐺| by Lagrange’s theorem, the group 𝐵1 is also a 𝑝-group. Thus if 𝐵1 ≠ {1}, by prop 7.5, there 

exists a cyclic group 𝐶2 and a subgroup 𝐵2 such that 𝐵1 ≅ 𝐶2 × 𝐵2. Continue in this way to get cyclic 

groups 𝐶1, …, 𝐶𝑘 until we get 𝐵𝑘 = {1} for some 𝑘 ∈ ℕ. Then 𝐺 ≅ 𝐶1 × ⋯ × 𝐶𝑘. ☐

Remark

One can show that the decomposition of a finite abelian 𝑝-group into a direct product of cyclic 

groups is unique up to its order.

Combining the remark, theorem 7.6 and theorem 7.3, we have

Theorem 7.7 Structure Theorem of Finite Abelian Groups

If 𝐺 is a finite abelian group, then

𝐺 ≅ ℤ𝑝𝑛1
1

× ⋯ × ℤ𝑝𝑛𝑘
𝑘

Where ℤ𝑝𝑛𝑖
𝑖

= (ℤ𝑝𝑛𝑖
𝑖

, +) ≅ 𝐶𝑝𝑛𝑖
𝑖

 are cyclic groups of order 𝑝𝑛𝑖
𝑖  (1 ≤ 𝑖 ≤ 𝑘). Note that 𝑝𝑖 are not 

necessarily distinct. The numbers 𝑝𝑛𝑖
𝑖  are uniquely determined up to their order.

Note that if 𝑝1 and 𝑝2 are distinct primes, then 𝐶𝑝𝑛1
1

× 𝐶𝑝𝑛2
2

≅ 𝐶𝑝𝑛1
1 𝑝𝑛2

2
. Thus by combining suitable 

coprime factors together,

Theorem 7.8 Invariant Factor Decomposition of Finite Abelian Groups

Let 𝐺 be a finite abelian group. Then

𝐺 ≅ ℤ𝑛1
× ⋯ × ℤ𝑛𝑟

where 𝑛𝑖 ∈ ℕ, 𝑛1 > 1 and 𝑛1 ∣ 𝑛2 ∣ ⋯ ∣ 𝑛𝑟.

Example 7.2.1

Let 𝐺 be an abelian group of order 48. Since 48 = 24 ⋅ 3, by theorem 7.3, 𝐺 ≅ 𝐻 × ℤ3, where 𝐻  

is an abelian group of order 24. The options for 𝐻  are ℤ24 , ℤ23 × ℤ2, ℤ22 × ℤ22 , ℤ22 × ℤ2 × ℤ2 

and ℤ2 × ℤ2 × ℤ2 × ℤ2. Thus we have

𝐺 ≅ ℤ24 × ℤ3 ≅ ℤ48

𝐺 ≅ ℤ23 × ℤ2 × ℤ3 ≅ ℤ2 × ℤ24

𝐺 ≅ ℤ22 × ℤ22 × ℤ3 ≅ ℤ22 × ℤ12

𝐺 ≅ ℤ22 × ℤ2 × ℤ2 × ℤ3 ≅ ℤ2 × ℤ2 × ℤ12

𝐺 ≅ ℤ2 × ℤ2 × ℤ2 × ℤ2 × ℤ3 ≅ ℤ2 × ℤ2 × ℤ2 × ℤ6

There are 5 non-isomorphic groups in total.
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8 Rings

8.1 Rings

Definition 8.1.1

A set 𝑅 is a (unitary) ring if it has two operations, addition + and multiplication ⋅ such that 

(𝑅, +) is an abelian group and (𝑅, ⋅) satisfies the closure, associativity and identity properties of 

a group, in addition to a distributive law. More precisely, if 𝑅 is a ring, then for all 𝑎, 𝑏, 𝑐 ∈ 𝑅
1. 𝑎 + 𝑏 ∈ 𝑅
2. 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐
3. There exists 0 ∈ 𝑅 such that 𝑎 + 0 = 𝑎 = 0 + 𝑎  (0 is called the zero of 𝑅)

4. There exists −𝑎 ∈ 𝑅 such that 𝑎 + (−𝑎) = 0 = (−𝑎) + 𝑎  (−𝑎 is called the negative of 𝑎)

5. 𝑎 + 𝑏 = 𝑏 + 𝑎
6. 𝑎𝑏 = 𝑎 ⋅ 𝑏 ∈ 𝑅
7. 𝑎(𝑏𝑐) = (𝑎𝑏)𝑐
8. There exists 1 ∈ 𝑅 such that 𝑎 ⋅ 1 = 𝑎 = 1 ⋅ 𝑎  (1 is called the unity of 𝑅)

9. 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 and (𝑏 + 𝑐)𝑎 = 𝑏𝑎 + 𝑐𝑎  (distributive law)

The ring 𝑅 is called a commutative ring if it also satisfies 𝑎𝑏 = 𝑏𝑎.

Example 8.1.1

ℤ, ℚ, ℝ, ℂ are commutative rings.

Example 8.1.2

For 𝑛 ∈ ℕ, 𝑛 ≥ 2, ℤ𝑛 is a commutative ring.

Example 8.1.3

For 𝑛 ∈ ℕ, 𝑛 ≥ 2, 𝑀𝑛(ℝ) is a (non commutative) ring

Warning

Note that since (𝑅, ⋅) is not a group, there is no left or right cancellation. For example, in ℤ, 

0 ⋅ 𝑥 = 0 ⋅ 𝑦 does not imply 𝑥 = 𝑦.

Notation

Given a ring 𝑅, to distinguish the difference between multiples in addition and in multiplication, 

for 𝑛 ∈ ℕ and 𝑎 ∈ 𝑅, we write

𝑛𝑎 ≔ 𝑎 + 𝑎 + ⋯ + 𝑎⏟
𝑛 times

𝑎𝑛 ≔ 𝑎 ⋅ 𝑎 ⋅ ⋯ ⋅ 𝑎⏟
𝑛 times
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Recall

For a group 𝐺 and 𝑔 ∈ 𝐺, we have 𝑔0 = 1, 𝑔1 = 𝑔 and (𝑔−1)−1 = 𝑔. Thus for addition, we have, 

for a ring 𝑅 and 𝑎 ∈ 𝑅
1. 0⏟

integer

⋅ 𝑎 = 0⏟
zero of 𝑅

2. 1⏟
integer

𝑎 = 𝑎

3. −(−𝑎) = 𝑎

Notation

For 𝑛 ∈ ℕ, we define

(−𝑛)𝑎 ≔ (−𝑎) + ⋯ + (−𝑎)⏟
𝑛 times

Also, we define 𝑎0 = 1. If the multiplicative inverse of 𝑎 exists,

𝑎−𝑛 = (𝑎−1)𝑛

Remark

By Prop 1.2 for 𝑛, 𝑚 ∈ ℤ, we have

1. (𝑛𝑎) + (𝑚𝑎) = (𝑛 + 𝑚)𝑎
2. 𝑛(𝑚𝑎) = (𝑛𝑚)𝑎
3. 𝑛(𝑎 + 𝑏) = 𝑛𝑎 + 𝑛𝑏

Proposition 8.1

Let 𝑅 be a ring and 𝑟, 𝑠 ∈ 𝑅.

1. If 0 is the zero of 𝑅, then

0𝑟 = 0 = 𝑟0
2. (−𝑟)𝑠 = 𝑟(−𝑠) = −(𝑟𝑠)
3. (−𝑟)(−𝑠) = 𝑟𝑠
4. For any 𝑚, 𝑛 ∈ ℤ,

(𝑚𝑟)(𝑛𝑠) = (𝑚𝑛)(𝑟𝑠)

Definition 8.1.2

A trivial ring is a ring of only one element. In this case, we have 1 = 0.

Remark

If 𝑅 is a ring with 𝑅 ≠ {0}, since 𝑟 = 𝑟1 for all 𝑟 ∈ 𝑅, we have 1 ≠ 0.
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Example 8.1.4

Let 𝑅1, …, 𝑅𝑛 be rings. We define component-wise operations on the product 𝑅1 × ⋯ × 𝑅𝑛 as 

follows:

(𝑟1, …, 𝑟𝑛) + (𝑠1, …, 𝑠𝑛) = (𝑟1 + 𝑠1, …, 𝑟𝑛 + 𝑠𝑛)
(𝑟1, …, 𝑟𝑛) ⋅ (𝑠1, …, 𝑠𝑛) = (𝑟1𝑠1, …, 𝑟𝑛𝑠𝑛)

One can check that 𝑅1 × ⋯ × 𝑅𝑛 is a ring. This set is called the direct product of 𝑅1, …, 𝑅𝑛.

Definition 8.1.3

If 𝑅 is a ring, we define the characteristic of 𝑅 denoted by ch(𝑅), in terms of the order of 1𝑅 in 

the additive group (𝑅, +):

ch(𝑅) = {𝑛 if 𝑜(1𝑅) = 𝑛 ∈ ℕ in (𝑅, +)
0 if 𝑜(1𝑅) = ∞ in (𝑅, +)

Remark

For 𝑘 ∈ ℤ, we write 𝑘𝑅 = 0 to mean that 𝑘𝑟 = 0 for all 𝑟 ∈ 𝑅.

By Prop 8.1, we have

𝑘𝑟 = 𝑘(1𝑅𝑟) = (𝑘1𝑅)𝑟

Thus 𝑘𝑅 = 0 if and only if 𝑘1𝑅 = 0. By Prop 2.6 and 2.7,

Proposition 8.2

Let 𝑅 be a ring and 𝑘 ∈ ℤ.

1. If ch(𝑅) = 𝑛 ∈ ℕ, then 𝑘𝑅 = 0 iff 𝑛 ∣ 𝑘
2. If ch(𝑅) = 0, then 𝑘𝑅 = 0 iff 𝑘 = 0

Example 8.1.5

Each of ℤ, ℚ, ℝ, ℂ has characteristic 0. For 𝑛 ∈ ℕ with 𝑛 ≥ 2, the ring ℤ𝑛 has characteristic 𝑛.
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8.2 Subrings

Definition 8.2.1

A subset 𝑆 of a ring 𝑅 is a subring if 𝑆 is a ring itself with 1𝑆 = 1𝑅 (with the same addition and 

multiplication). Note that properties (2),(3),(7), and (9) of a ring are automatically satisfied. Thus 

to show that 𝑆 is a subring, it suffices to show

Subring Test:

𝑆 ⊆ 𝑅 is a subring if

1. 1𝑅 ∈ 𝑆
2. If 𝑠, 𝑡 ∈ 𝑆, then 𝑠 − 𝑡, 𝑠𝑡 ∈ 𝑆.

Note that if (2) holds, then 0 = 𝑠 − 𝑠 ∈ 𝑆 and −𝑡 = 0 − 𝑡 ∈ 𝑆

Example 8.2.1

We have a chain of commutative rings

ℤ ⊆ ℚ ⊆ ℝ ⊆ ℂ

Example 8.2.2

If 𝑅 is a ring, the center 𝑍(𝑅) of 𝑅 is defined to be

𝑍(𝑅) = {𝑧 ∈ 𝑅 | 𝑧𝑟 = 𝑟𝑧 ∀𝑟 ∈ 𝑅}

Note that 1𝑅 ∈ 𝑍(𝑅). Also, if 𝑠, 𝑡 ∈ 𝑍(𝑅), then for 𝑟 ∈ 𝑅,

(𝑠 − 𝑡)𝑟 = 𝑠𝑟 − 𝑡𝑟 = 𝑟𝑠 − 𝑟𝑡 = 𝑟(𝑠 − 𝑡)
(𝑠𝑡)𝑟 = 𝑠(𝑡𝑟) = 𝑠(𝑟𝑡) = (𝑠𝑟)𝑡 = (𝑟𝑠)𝑡 = 𝑟(𝑠𝑡)

By the subring test, 𝑍(𝑅) is a subring of 𝑅.

Example 8.2.3

Let

ℤ[𝑖] = {𝑎 + 𝑏𝑖 | 𝑎, 𝑏 ∈ ℤ and 𝑖2 = −1} ⊆ ℂ.

Then one can show that ℤ[𝑖] is a subring of ℂ, called the ring of Gaussian integers.

8.3 Ideals

Note

Let 𝑅 be a ring and 𝐴 an additive subgroup of 𝑅. Since (𝑅, +) is abelian, we have 𝐴 ⊲ 𝑅. Thus 

we have the additive quotient group

𝑅/𝐴 = {𝑟 + 𝐴 | 𝑟 ∈ 𝑅} with 𝑟 + 𝐴 = {𝑟 + 𝑎 | 𝑎 ∈ 𝐴}

Using the known properties about cosets and quotient groups, we have
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Proposition 8.3

Let 𝑅 be a ring and 𝐴 an additive subgroup of 𝑅. For 𝑟, 𝑠 ∈ 𝑅, we have

1. 𝑟 + 𝐴 = 𝑠 + 𝐴 iff (𝑟 − 𝑠) ∈ 𝐴
2. (𝑟 + 𝐴) + (𝑠 + 𝐴) = (𝑟 + 𝑠) + 𝐴
3. 0 + 𝐴 = 𝐴 is the (additive) identity of 𝑅/𝐴
4. −(𝑟 + 𝐴) = (−𝑟) + 𝐴 is the (additive) inverse of 𝑟 + 𝐴
5. 𝑘(𝑟 + 𝐴) = 𝑘𝑟 + 𝐴 for all 𝑘 ∈ ℤ

Remark

Since 𝑅 is a ring, it is natural to ask if we could make 𝑅/𝐴 a ring. A natural way to define 

multiplication in 𝑅/𝐴 is that

(𝑟 + 𝐴)(𝑠 + 𝐴) = (𝑟𝑠 + 𝐴) ∀𝑟, 𝑠 ∈ 𝑅 (∗)

Note that we could have 𝑟 + 𝐴 = 𝑟1 + 𝐴 and 𝑠 + 𝐴 = 𝑠1 + 𝐴 with 𝑟 ≠ 𝑟1 and 𝑠 ≠ 𝑠1. Thus in 

order for (∗) to make sense, a necessary condition is

𝑟 + 𝐴 = 𝑟1 + 𝐴 and 𝑠 + 𝐴 = 𝑠1 + 𝐴 ⟹ 𝑟𝑠 + 𝐴 = 𝑟1𝑠1 + 𝐴

In this case, we say that multiplication (𝑟 + 𝐴)(𝑠 + 𝐴) is well-defined.

Proposition 8.4

Let 𝐴 be an additive subgroup of a ring 𝑅. For 𝑎 ∈ 𝐴 define

𝑅𝑎 = {𝑟𝑎 | 𝑟 ∈ 𝑅} and 𝑎𝑅 = {𝑎𝑟 | 𝑟 ∈ 𝑅}

Then the following are equivalent:

1. 𝑅𝑎 ⊆ 𝐴 and 𝑎𝑅 ⊆ 𝐴 ∀𝑎 ∈ 𝐴
2. For 𝑟, 𝑠 ∈ 𝑅, the multiplication (𝑟 + 𝐴)(𝑠 + 𝐴) is well-defined in 𝑅/𝐴.

Proof of (1) ⇒ (2): If 𝑟 + 𝐴 = 𝑟1 + 𝐴 and 𝑠 + 𝐴 = 𝑠1 + 𝐴, we need to show that 𝑟𝑠 + 𝐴 = 𝑟1𝑠1 + 𝐴. 

Since (𝑟 − 𝑟1) ∈ 𝐴 and (𝑠 − 𝑠1) ∈ 𝐴, by (1), we have

𝑟𝑠 − 𝑟1𝑠1 = 𝑟𝑠 − 𝑟1𝑠 + 𝑟1𝑠 − 𝑟1𝑠1 = (𝑟 − 𝑟1)𝑠 + 𝑟1(𝑠 − 𝑠1) ∈ 𝐴

By proposition 8.3, 𝑟𝑠 + 𝐴 = 𝑟1𝑠1 + 𝐴. ☐

Proof of (2) ⇒ (1): Let 𝑟 ∈ 𝑅 and 𝑎 ∈ 𝐴. By prop 8.1, we have

𝑟𝑎 + 𝐴 = (𝑟 + 𝐴)(𝑎 + 𝐴) = (𝑟 + 𝐴)(0 + 𝐴) = 𝑟0 + 𝐴 = 0 + 𝐴 = 𝐴

Thus 𝑟𝑎 ∈ 𝐴 and we have 𝑅𝑎 ⊆ 𝐴. Similarly, we can show 𝑎𝑅 ⊆ 𝐴. ☐
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Definition 8.3.1

An additive subgroup 𝐴 of a ring 𝑅 is an ideal of 𝑅 if 𝑅𝑎 ⊆ 𝑅 and 𝑎𝑅 ⊆ 𝐴.

Ideal Test:

1. 0 ∈ 𝐴
2. For 𝑎, 𝑏 ∈ 𝐴 and 𝑟 ∈ 𝑅, we have 𝑎 − 𝑏 ∈ 𝐴 and 𝑟𝑎, 𝑎𝑟 ∈ 𝐴

Example 8.3.1

If 𝑅 is a ring, then {0} and 𝑅 are ideals of 𝑅.

Example 8.3.2

Let 𝑅 be a commutative ring and 𝑎1, …, 𝑎𝑛 ∈ 𝑅. Consider the set 𝐼  generated by 𝑎1, …, 𝑎𝑛 i.e.

𝐼 = ⟨𝑎1, …, 𝑎𝑛⟩ = {𝑟1𝑎1 + ⋯ + 𝑟𝑛𝑎𝑛 | 𝑟𝑖 ∈ 𝑅}

Then one can show that 𝐼  is an ideal.

Proposition 8.5

Let 𝐴 be an ideal of a ring 𝑅. If 1𝑅 ∈ 𝐴, then 𝐴 = 𝑅.

Proof: For every 𝑟 ∈ 𝑅, since 𝐴 is an ideal and 1𝑅 ∈ 𝐴, we have 𝑟 = 𝑟1𝑅 ∈ 𝐴. It follows that 

𝑅 ⊆ 𝐴 ⊆ 𝑅 and hence 𝑅 = 𝐴. ☐

From the above discussion, we have

Proposition 8.6

Let 𝐴 be an ideal of a ring 𝑅. Then the additive quotient group 𝑅/𝐴 is a ring with multiplication 

(𝑟 + 𝐴)(𝑠 + 𝐴) = 𝑟𝑠 + 𝐴. The unity of 𝑅/𝐴 is 1 + 𝐴.

Definition 8.3.2

Let 𝐴 be an ideal of a ring 𝑅. The ring 𝑅/𝐴 is called a quotient ring of 𝑅 by 𝐴.

Definition 8.3.3

Let 𝑅 be a commutative ring and 𝐴 an ideal of 𝑅. If 𝐴 = 𝑎𝑅 = 𝑅𝑎 for some 𝑎 ∈ 𝑅, we say 𝐴 is 

a principal ideal generated by 𝑎 and is denoted by 𝐴 = ⟨𝑎⟩.

Example 8.3.3

If 𝑛 ∈ ℤ, then ⟨𝑧⟩ = 𝑛ℤ is an ideal of ℤ.
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Proposition 8.7

All ideals of ℤ are of the form ⟨𝑧⟩ for some 𝑛 ∈ ℤ. If ⟨𝑛⟩ ≠ {0} and 𝑛 ∈ ℕ, then the generator is 

uniquely determined.

Proof: Let 𝐴 be an ideal of ℤ. If 𝐴 = {0}, then 𝐴 = ⟨0⟩. Otherwise, choose 𝑎 ∈ 𝐴 with 𝑎 ≠ 0 and |𝐴| 
minimum. Clearly, ⟨𝑎⟩ ⊆ 𝐴. To prove the other inclusion, let 𝑏 ∈ 𝐴. By the division algorithm, we have 

𝑏 = 𝑞𝑎 + 𝑟 with 𝑞, 𝑟 ∈ ℤ and 0 ≤ 𝑟 < |𝑎|. If 𝑟 ≠ 0, since 𝐴 is an ideal, and 𝑎, 𝑏 ∈ 𝐴, we have 

𝑟 = 𝑏 − 𝑞𝑎 ∈ 𝐴 with |𝑟| < |𝑎|, a contradiction. Thus 𝑟 = 0 and 𝑏 = 𝑞𝑎, i.e. 𝑏 ∈ ⟨𝑎⟩. It follows that 

𝐴 = ⟨𝑎⟩. ☐

8.4 Isomorphism Theorems

Definition 8.4.1

Let 𝑅, 𝑆 be rings. A mapping 𝜃 : 𝑅 → 𝑆 is a ring homomorphism if for all 𝑎, 𝑏 ∈ 𝑅
1. 𝜃(𝑎 + 𝑏) = 𝜃(𝑎) + 𝜃(𝑏)
2. 𝜃(𝑎𝑏) = 𝜃(𝑎)𝜃(𝑏)
3. 𝜃(1𝑅) = 1𝑆

Example 8.4.1

The mapping 𝑘 ↦ [𝑘] from ℤ to ℤ𝑛 is a surjective ring homomorphism.

Example 8.4.2

If 𝑅1, 𝑅2 are rings, the projection 𝜋1 : 𝑅1 × 𝑅2 → 𝑅1 defined by 𝜋1(𝑟1, 𝑟2) = 𝑟1 is a surjective 

ring homomorphism. Similarly for 𝜋2.

Proposition 8.8

Let 𝜃 : 𝑅 → 𝑆 be a ring homomorphism.

1. 𝜃(0𝑅) = 0𝑆
2. 𝜃(−𝑟) = −𝜃(𝑟)
3. 𝜃(𝑘𝑟) = 𝑘𝜃(𝑟) for all 𝑘 ∈ ℤ
4. 𝜃(𝑟𝑛) = 𝜃(𝑟)𝑛 for all 𝑛 ∈ ℕ ∪ {0}
5. If 𝑎 ∈ 𝑅∗ (the set of elements in 𝑅 which have multiplicative inverses, such 𝑎 is called a 

unit of 𝑅) then 𝜃(𝑎𝑘) = 𝜃(𝑎)𝑘 for all 𝑘 ∈ ℤ.

Definition 8.4.2

A ring isomorphism is a bijective homomorphism. If there exists an isomorphism between rings 

𝑅 and 𝑆, we say 𝑅 and 𝑆 are isomorphic, denoted 𝑅 ≅ 𝑆.
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Exercise 8.4.1

Let 𝜃 : 𝑅 → 𝑆 be a bijection of rings with 𝜃(𝑟𝑟′) = 𝜃(𝑟)𝜃(𝑟′) for all 𝑟, 𝑟′ ∈ 𝑅. Write 𝜃(1𝑅) = 𝑒. 

Prove that 𝑠𝑒 = 𝑒𝑠 = 𝑠 for all 𝑠 ∈ 𝑆 (hence condition 3 for a ring homomorphism can be omitted 

in this case).

Definition 8.4.3

Let 𝜃 : 𝑅 → 𝑆 be a ring homomorphism. The kernel of 𝜃 is defined by

ker 𝜃 = {𝑟 ∈ 𝑅 | 𝜃(𝑟) = 0} ⊆ 𝑅

and the image of 𝜃 is defined by

im 𝜃 = 𝜃(𝑅) = {𝜃(𝑟) | 𝑟 ∈ 𝑅} ⊆ 𝑆

We have seen earlier that ker 𝜃 and im 𝜃 are additive subgroups of 𝑅 and 𝑆 respectively.

Proposition 8.9

Let 𝜃 : 𝑅 → 𝑆 be a ring homomorphism. Then

1. im 𝜃 is a subring of 𝑆
2. ker 𝜃 is an ideal of 𝑅

Proof of 1: Since im 𝜃 is an additive subgroup of 𝑆, it suffices to show that 𝜃(𝑅) is closed under 

multiplication, and 1𝑆 ∈ 𝜃(𝑅). Note that 1𝑆 = 𝜃(1𝑅) ∈ 𝜃(𝑅). Also if 𝑠1 = 𝜃(𝑟1) and 𝑠2 = 𝜃(𝑟2), then

𝑠1𝑠2 = 𝜃(𝑟1)𝜃(𝑟2) = 𝜃(𝑟1𝑟2) ∈ 𝜃(𝑅)

By the subring test, im 𝜃 is a subring of 𝑆. ☐

Proof of 2: Since ker 𝜃 is an additive subgroup of 𝑅, it suffices to show that 𝑟𝑎, 𝑎𝑟 ∈ ker 𝜃 for all 𝑟 ∈ 𝑅, 

𝑎 ∈ ker 𝜃. If 𝑟 ∈ 𝑅 and 𝑎 ∈ ker 𝜃, then

𝜃(𝑟𝑎) = 𝜃(𝑟)𝜃(𝑎) = 𝜃(𝑟) ⋅ 0 = 0

Thus 𝑟𝑎 ∈ ker 𝜃. Similarly, one can show 𝑎𝑟 ∈ ker 𝜃. Thus ker 𝜃 is an ideal of 𝑅. ☐

Theorem 8.10 First Isomorphism Theorem

Let 𝜃 : 𝑅 → 𝑆 be a ring homomorphism. We have 𝑅/ ker 𝜃 ≅ im 𝜃.

Proof: Let 𝐴 = ker 𝜃. Since 𝐴 is an ideal of 𝑅, 𝑅/𝐴 is a ring. Define the map

𝜃 : 𝑅/𝐴 ⟶ im 𝜃
𝑟 + 𝐴 ⟼ 𝜃(𝑟)

Note that 𝑟 + 𝐴 = 𝑠 + 𝐴 ⟺ 𝑟 − 𝑠 ∈ 𝐴 ⟺ 𝜃(𝑟 − 𝑠) = 0 ⟺ 𝜃(𝑟) = 𝜃(𝑠). Thus 𝜃 is well defined and 

injective. Also, 𝜃 is clearly surjective. One can show that 𝜃 is a homomorphism. It follows that 𝜃 is a 

ring isomorphism and im 𝜃 ≅ 𝑅/ ker 𝜃 ☐
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Remark

Let 𝐴, 𝐵 be subsets of a ring 𝑅. If 𝐴 and 𝐵 are both subrings, then 𝐴 ∩ 𝐵 is the largest subring 

of 𝑅 contained in both 𝐴 and 𝐵.

Notation

To consider the smallest subring of 𝑅 containing both 𝐴 and 𝐵 (𝐴, 𝐵 not necessarily subrings), 

we define the sum 𝐴 + 𝐵 to be

𝐴 + 𝐵 = {𝑎 + 𝑏 | 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}

One can show

Proposition 8.11

If 𝑅 is a ring, then we have

1. If 𝐴, 𝐵 are subrings of 𝑅 (with 1𝐴 = 1𝐵 = 1𝑅) then 𝐴 ∩ 𝐵 is a subring of 𝑅.

2. If 𝐴 is a subring and 𝐵 is an ideal of 𝑅, then 𝐴 + 𝐵 is a subring of 𝑅
3. If 𝐴 and 𝐵 are ideals of 𝑅, then 𝐴 + 𝐵 is an ideal of 𝑅.

Using the first isomorphism theorem, one can show (see A8)

Theorem 8.12 Second Isomorphism Theorem

Let 𝐴 be a subring and 𝐵 an ideal of a ring 𝑅. Then 𝐴 + 𝐵 is a subring of 𝑅, 𝐵 is an ideal of 

𝐴 + 𝐵, 𝐴 ∩ 𝐵 is an ideal of 𝐴 and

(𝐴 + 𝐵)/𝐵 ≅ 𝐴/(𝐴 ∩ 𝐵)

Theorem 8.13 Third Isomorphism Theorem

Let 𝐴 and 𝐵 be ideals of a ring 𝑅 with 𝐴 ⊆ 𝐵. Then 𝐵/𝐴 is an ideal in 𝑅/𝐴 and

(𝑅/𝐴)/(𝐵/𝐴) ≅ 𝑅/𝐵

Corollary 8.14 Correspondence Theorem / Fourth Isomorphism Theorem

Let 𝑅 be a ring and 𝐴 an ideal. There exists a bijection between the set of ideals 𝐵 of 𝑅 that 

contains 𝐴 and the set of ideals of 𝑅/𝐴.

Example 8.4.3

Combining the third isomorphism theorem and the fact that all ideals of ℤ are principal, all 

ideals of ℤ𝑛 are principal.
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Theorem 8.15 Chinese Remainder Theorem

Let 𝐴, 𝐵 be ideals of 𝑅
1. If 𝐴 + 𝐵 = 𝑅 then 𝑅/(𝐴 ∩ 𝐵) ≅ 𝑅/𝐴 × 𝑅/𝐵
2. If 𝐴 + 𝐵 = 𝑅 and 𝐴 ∩ 𝐵 = {0}, then 𝑅 ≅ 𝑅/𝐴 × 𝑅/𝐵

Proof: (2) obviously follows from (1), so we prove (1). Define 𝜃 : 𝑅 → 𝑅/𝐴 × 𝑅/𝐵 by 

𝜃(𝑟) = (𝑟 + 𝐴, 𝑟 + 𝐵). Then 𝜃 is a ring homomorphism with ker 𝜃 = 𝐴 ∩ 𝐵. To show 𝜃 is surjective, let 

(𝑠 + 𝐴, 𝑡 + 𝐵) ∈ 𝑅/𝐴 × 𝑅/𝐵 with 𝑠, 𝑡 ∈ 𝑅. Since 𝐴 + 𝐵 = 𝑅, there exists 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 

1 = 𝑎 + 𝑏. Let 𝑟 = 𝑠𝑏 + 𝑡𝑎. Then

𝑠 − 𝑟 = 𝑠 − 𝑠𝑏 − 𝑡𝑎 = 𝑠(1 − 𝑏) − 𝑡𝑎 = 𝑠𝑎 − 𝑡𝑎 = (𝑠 − 𝑡)𝑎 ∈ 𝐴

Thus 𝑠 + 𝐴 = 𝑟 + 𝐴. Similarly, we have 𝑡 + 𝐵 = 𝑟 + 𝐵. Thus 𝜃(𝑟) = (𝑟 + 𝐴, 𝑟 + 𝐵) = (𝑠 + 𝐴, 𝑡 + 𝐵). 
Thus im 𝜃 = 𝑅/𝐴 × 𝑅/𝐵. By the first isomorphism theorem, we have

𝑅/(𝐴 ∩ 𝐵) ≅ 𝑅/𝐴 × 𝑅/𝐵

☐

Example 8.4.4

Let 𝑚, 𝑛 ∈ ℕ with gcd(𝑚, 𝑛) = 1. By Bézout’s Lemma, we have 1 = 𝑚𝑟 + 𝑛𝑠 for some 𝑟, 𝑠 ∈ ℤ. 

Thus 1 ∈ 𝑚ℤ + 𝑛ℤ and hence 𝑚ℤ + 𝑛ℤ = ℤ. Also, since gcd(𝑚, 𝑛) = 1, we have 

𝑚ℤ ∩ 𝑛ℤ = 𝑚𝑛ℤ. By CRT,

Corollary 8.16

1. If 𝑚, 𝑛 ∈ ℕ with gcd(𝑚, 𝑛) = 1, then

ℤ𝑚𝑛 ≅ ℤ𝑚 × ℤ𝑛

2. If 𝑚, 𝑛 ∈ ℕ with 𝑚, 𝑛 ≥ 2 and gcd(𝑚, 𝑛) 𝜑(𝑚𝑛) = 𝜑(𝑚)𝜑(𝑛), where 𝜑(𝑚) = |ℤ∗
𝑚| is the 

Euler 𝜑-function

Proof of 2: From (1), we have

(ℤ𝑚𝑛)∗ ≅ (ℤ𝑚 × ℤ𝑛)∗ ≅ ℤ∗
𝑚 × ℤ∗

𝑛

Since |ℤ∗
𝑚| = 𝜑(𝑚), we have 𝜑(𝑚𝑛) = 𝜑(𝑚)𝜑(𝑛) ☐

Remark

Let 𝑚, 𝑛 ∈ ℤ with gcd(𝑚, 𝑛) = 1. For 𝑎, 𝑏 ∈ ℤ, by Cor 8.16 and the proof of Thm 8.15, for 

[𝑎] ∈ ℤ𝑚 and [𝑏] ∈ ℤ𝑛, there exists a unique [𝑐] ∈ ℤ𝑚𝑛 such that [𝑐] = [𝑎] in ℤ𝑚 and [𝑐] = [𝑏] in 

ℤ𝑛. In other words, the simultaneous congruences 𝑥 ≡ 𝑎 (mod 𝑚) and 𝑥 ≡ 𝑏 (mod 𝑛) has a 

unique solution 𝑥 ≡ 𝑐 (mod 𝑚𝑛), which is CRT in Math 135.
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Proposition 8.17

If 𝑅 is a ring with |𝑅| = 𝑝 a prime, then 𝑅 ≅ ℤ𝑝.

Proof: Define 𝜃 : ℤ𝑝 → 𝑅 by 𝜃[𝑘] = 𝑘1𝑅 . Note that since 𝑅 is an additive group and |𝑅| = 𝑝, by 

Lagrange, 𝑜(1𝑅) = 1 or 𝑝. Since 1𝑅 ≠ 0, we have 𝑜(1𝑅) = 𝑝. Thus

[𝑘] = [𝑚] ⟺ 𝑝 ∣ (𝑘 − 𝑚) ⟺ (𝑘 − 𝑚)1𝑅 = 0 ⟺ 𝑘1𝑅 = 𝑚1𝑅 in 𝑅

Thus 𝜃 is well-defined and injective. Since |ℤ𝑝| = 𝑝 = |𝑅| and 𝜃 is injective, 𝜃 is also surjective. Finally, 

once can prove that 𝜃 is a ring homomorphism. It follows that 𝜃 is a ring isomorphism and 𝑅 ≅ ℤ𝑝. ☐

Exercise 8.4.2

What are the possible rings 𝑅 with |𝑅| = 𝑝2 where 𝑝 is a prime.

9 Commutative Rings

9.1 Integral Domains and Fields

Definition 9.1.1

Let 𝑅 be a ring. We say 𝑢 ∈ 𝑅 is a unit if 𝑢 has a multiplicative inverse in 𝑅. Denoted by 𝑢−1. 

We have 𝑢𝑢−1 = 1 = 𝑢−1𝑢. Note that if 𝑢 is a unit in 𝑅, and 𝑟, 𝑠 ∈ 𝑅 we have

𝑢𝑟 = 𝑢𝑠 ⟹ 𝑠 = 𝑠 and 𝑟𝑢 = 𝑠𝑢 ⟹ 𝑟 = 𝑠

Let 𝑅∗ denote the set of all units in 𝑅. One can show that (𝑅, ⋅) is group called the group of units 

of 𝑅.

Example 9.1.1

Note that 2 is a unit in ℚ, but not a unit in ℤ. We have ℚ∗ = ℚ ∖ {0} and ℤ∗ = {±1}.

Exercise 9.1.1

Consider the ring of Gaussian integers ℤ[𝑖]. One can show ℤ[𝑖]∗ = {±1, ±𝑖}
Hint: Prove that |𝑥𝑦| = |𝑥||𝑦| and |𝑥| = 1 ⟺ 𝑥 is a unit.

Definition 9.1.2

A ring 𝑅 ≠ {0} is a division ring if 𝑅∗ = 𝑅 ∖ {0} i.e. every nonzero element of 𝑅 is a unit of 𝑅. 

A commutative division ring is called a field.

Example 9.1.2

ℚ, ℝ, ℂ are fields, but ℤ is not a field.
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Example 9.1.3

We recall that the equation [𝑎][𝑥] = [1] in ℤ𝑛 has a solution iff gcd(𝑎, 𝑛) = 1 for all 

𝑎 ∈ {1, 2, …, 𝑝 − 1}. Thus ℤ∗
𝑝 = ℤ𝑝 ∖ {0} and ℤ𝑝 is a field. However, if 𝑛 is not prime, say 

𝑛 = 𝑎𝑏 with 1 < 𝑎, 𝑏 < 𝑛. Then the nonzero congruence classes [𝑎], [𝑏] are not units in ℤ𝑛 as 

there is no solution for [𝑎][𝑥] = [1] and hence ℤ∗
𝑛 ≠ ℤ𝑛 ∖ {0}. Thus ℤ𝑛 is a field iff 𝑛 is a prime.

Remark

If 𝑅 is a division ring or a field, then its only ideals are {0} or 𝑅 since if 𝐴 ≠ {0} is an ideal of 

𝑅, then 0 ≠ 𝑎 ∈ 𝐴 implies that 1 = 𝑎𝑎−1 ∈ 𝐴. By prop 8.5, 𝐴 = 𝑅. As a consequence, if we have 

a ring homomorphism a field 𝐹  to a ring 𝑆, since ker 𝜃 is an ideal, ker 𝜃 = {0} or 𝐹 . Hence 𝜃 is 

either injective or the zero map.

Exercise 9.1.2

(This is quite hard) Prove that every finite division ring is a field.

Note

For 𝑟, 𝑠 ∈ ℝ, we have 𝑟𝑠 = 0 implies that 𝑟 = 0 or 𝑠 = 0. This property is useful in solving 

equations, say if 𝑥2 − 𝑥 − 6 = 0 i.e. (𝑥 − 3)(𝑥 − 2) = 0, then 𝑥 = 3 or 𝑥 = 2. However, such 

property is not always true. For example, [2][3] = [6] = [0] in ℤ6, but [2] ≠ [0] and [3] ≠ [0].

Exercise 9.1.3

Solve [(𝑥 − 2)(𝑥 − 3)] = [0] in ℤ6.

Definition 9.1.3

Let 𝑅 ≠ {0} be a ring. For 0 ≠ 𝑎 ∈ 𝑅, we say 𝑎 is a zero divisor if there exists 0 ≠ 𝑏 ∈ 𝑅 such 

that 𝑎𝑏 = 0.

Example 9.1.4

In ℤ6, [2], [3], [4] are zero divisors since [2][3] = [0] = [4][3].

Example 9.1.5

Note that in 𝑀2(ℝ), we have

[1
0

0
0][0

0
0
1] = [0

0
0
0]

Thus [
1
0

0
0] is a zero divisor.
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Proposition 9.1

Given a ring 𝑅, for all 𝑎, 𝑏, 𝑐 ∈ 𝑅, the following are equivalent:

1. If 𝑎𝑏 = 0, then 𝑎 = 0 or 𝑏 = 0
2. If 𝑎𝑏 = 𝑎𝑐 and 𝑎 ≠ 0, then 𝑏 = 𝑐
3. If 𝑏𝑎 = 𝑐𝑎 and 𝑎 ≠ 0, then 𝑏 = 𝑐

Proof: We prove (1) ⟺ (2) and the proof of (1) ⟺ (3) is similar.

(1) ⟹ (2): Let 𝑎𝑏 = 𝑎𝑐 with 𝑎 ≠ 0. Then 𝑎(𝑏 − 𝑐) = 0. By (1), since 𝑎 ≠ 0, we have 𝑏 − 𝑐 = 0 i.e. 

𝑏 = 𝑐.

(2) ⟹ (1): Let 𝑎𝑏 = 0 in 𝑅. Two cases:

1. If 𝑎 = 0, then we are done

2. If 𝑎 ≠ 0, then 𝑎𝑏 = 0 = 𝑎0. By (2), since 𝑎 ≠ 0, we have 𝑏 = 0.

☐

Definition 9.1.4

A commutative ring 𝑅 ≠ {0} is an integral domain if it has no zero divisors i.e. if 𝑎𝑏 = 0 in 𝑅, 

then 𝑎 = 0 or 𝑏 = 0.

Example 9.1.6

ℤ is an integral domain since for 𝑎, 𝑏 ∈ ℤ, 𝑎𝑏 = 0 implies 𝑎 = 0 or 𝑏 = 0.

Example 9.1.7

Note that if 𝑝 is a prime, if 𝑝 ∣ 𝑎𝑏 then 𝑝 ∣ 𝑎 or 𝑝 ∣ 𝑏 i.e. [𝑎][𝑏] = [0] in ℤ𝑝 implies that [𝑎] = [0] or 

[𝑏] = [0]. Thus ℤ𝑝 is an integral domain. However, if 𝑛 = 𝑎𝑏 with 1 < 𝑎, 𝑏 < 𝑛, then [𝑎][𝑏] = [0] 
with [𝑎] ≠ [0] and [𝑏] ≠ [0]. Thus ℤ𝑛 is an integral domain iff 𝑛 is a prime.

Proposition 9.2

Every field is an integral domain.

Proof: Let 𝑎𝑏 = 0 in a field 𝑅. We need to show that 𝑎 = 0 or 𝑏 = 0. Two cases:

1. If 𝑎 = 0, then we are done

2. If 𝑎 ≠ 0, since 𝑅 is a field, 𝑎 ∈ 𝑅∗ and 𝑎−1 ∈ 𝑅 exists. Then

𝑏 = 1 ⋅ 𝑏 = (𝑎−1𝑎𝑏) = 𝑎−1(𝑎𝑏) = 𝑎−10 = 0

Thus 𝑅 is an integral domain.

☐

Remark

Using the above proof, one can show that every subring of a field is an integral domain.
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Remark

The converse of Prop 9.2 is not true, for example, ℤ is an integral domain but not a field.

Example 9.1.8

The Gaussian integers ℤ[𝑖] is an integral domain, but not a field.

Proposition 9.3

Every finite integral domain is a field.

Proof: Let 𝑅 be a finite integral domain and 0 ≠ 𝑎 ∈ 𝑅. Consider the map

𝜃 : 𝑅 ⟶ 𝑅
𝑟 ⟼ 𝑎𝑟

Since 𝑅 is an integral domain, 𝑎𝑟 = 𝑎𝑠 and 𝑎 ≠ 0 implies that 𝑟 = 𝑠. Hence 𝜃 is injective. Since 𝑅 is 

finite, 𝜃 is surjective. In particular, there is 𝑏 ∈ 𝑅 such that 𝑎𝑏 = 1. Since 𝑅 is commutative, we have 

𝑎𝑏 = 1 = 𝑏𝑎, i.e. 𝑎 is a unit. Hence 𝑅∗ = 𝑅 ∖ {0} and 𝑅 is a field. ☐

Recall

The characteristic of a ring 𝑅, denoted by ch(𝑅) is the order of 1𝑅 in (𝑅, +). We write 

ch(𝑅) = 0 if 𝑜(1𝑅) = ∞ and ch(𝑅) = 𝑛 if 𝑜(1𝑅) = 𝑛 ∈ ℕ.

Proposition 9.4

The characteristic of any integral domain is either 0 or a prime 𝑝.

Proof: Let 𝑅 be an integral domain. Two cases:

1. If ch(𝑅) = ∞, then we are done.

2. Note that since 𝑅 ≠ {0}, we have 𝑛 ≠ 1. If ch(𝑅) = 𝑛 ∈ ℕ ∖ {1}, suppose that 𝑛 is not prime, say 

𝑛 = 𝑎𝑏 with 1 < 𝑎, 𝑏 < 𝑛. If 1 is the unity of 𝑅, then by Prop 8.1, we have

(𝑎 ⋅ 1)(𝑏 ⋅ 1) = (𝑎𝑏)(1 ⋅ 1) = 𝑛 ⋅ 1 = 0

Since 𝑅 is an integral domain, we have 𝑎 ⋅ 1 = 0 or 𝑏 ⋅ 1 = 0, which leads to a contradiction since 

𝑜(1) = 𝑛. Thus 𝑛 is prime.

☐
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Remark

Let 𝑅 be an integral domain with ch(𝑅) = 𝑝, a prime. For 𝑎, 𝑏 ∈ 𝑅, we have

(𝑎 + 𝑏)𝑝 = 𝑎𝑝 + (𝑝
1
)𝑎𝑝−1𝑏 + (𝑝

2
)𝑎𝑝−2𝑏2 + ⋯ + ( 𝑝

𝑝 − 1
)𝑎𝑏𝑝−1 + 𝑏𝑝

Since 𝑝 is a prime, 𝑝 ∣ (𝑝
𝑖 ) for all 1 ≤ 𝑖 ≤ (𝑝 − 1). Since ch(𝑅) = 𝑝, we have

(𝑎 + 𝑏)𝑝 = 𝑎𝑝 + 𝑏𝑝

9.2 Prime Ideals and Maximal Ideals

Let 𝑝 be a prime and 𝑎, 𝑏 ∈ ℤ. We recall from Math 135 that 𝑝 ∣ 𝑎𝑏 implies 𝑝 ∣ 𝑎 or 𝑝 ∣ 𝑏. In other words, 

if 𝑎𝑏 ∈ 𝑝ℤ, then 𝑎 ∈ 𝑝ℤ or 𝑏 ∈ 𝑝ℤ.

Definition 9.2.1

Let 𝑅 be a commutative ring. An ideal 𝑃 ≠ 𝑅 of 𝑅 is a prime ideal if whenever 𝑟, 𝑠 ∈ 𝑅 satisfy 

𝑟𝑠 ∈ 𝑃 , then 𝑟 ∈ 𝑃  or 𝑠 ∈ 𝑃 .

Example 9.2.1

{0} is prime ideal of ℤ

Example 9.2.2

For 𝑛 ∈ ℕ with 𝑛 ≥ 2, 𝑛ℤ is a prime ideal of ℤ if and only if 𝑛 is prime.

Proposition 9.5

If 𝑅 is a commutative ring, then an ideal 𝑃  of 𝑅 is a prime ideal if and only if 𝑅/𝑃  is an integral 

domain.

Proof: Since 𝑅 is a commutative ring, so is 𝑅/𝑃 . Note that

𝑅/𝑃 ≠ {0} ⟺ 0 + 𝑃 ≠ 1 + 𝑃 ⟺ 1 ∉ 𝑃 ⟺ 𝑃 ≠ 𝑅.

Also, for 𝑟, 𝑠 ∈ 𝑅, we have

𝑃 is a prime ideal ⟺ 𝑟𝑠 ∈ 𝑃 implies that 𝑟 ∈ 𝑃 or 𝑠 ∈ 𝑃
⟺ (𝑟 + 𝑃)(𝑠 + 𝑃) = 0 + 𝑃 implies that

𝑟 + 𝑃 = 0 + 𝑃 or 𝑠 + 𝑃 = 0 + 𝑃
⟺ 𝑅/𝑃 is an integral domain

☐
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Definition 9.2.2

Let 𝑅 be a commutative ring. An ideal 𝑀 ≠ 𝑅 of 𝑅 is a maximal ideal if whenever 𝐴 is an ideal 

such that 𝑀 ⊆ 𝐴 ⊆ 𝑅, then 𝐴 = 𝑀  or 𝐴 = 𝑅.

Remark

Let 𝑀  be a maximal ideal of 𝑅 and 𝑟 ∉ 𝑀 . Then 𝑀 ⊆ ⟨𝑟⟩ + 𝑀 ⊆ 𝑅. Since 𝑀 ≠ ⟨𝑟⟩ + 𝑀 , we 

have ⟨𝑟⟩ + 𝑀 = 𝑅.

Proposition 9.6

If 𝑅 is a commutative ring, then an ideal 𝑀  of 𝑅 is a maximal ideal if and only if 𝑅/𝑀  is a field.

Proof: Since 𝑅 is a commutative ring, so is 𝑅/𝑀 . Note that

𝑅/𝑀 ≠ {0} ⟺ 0 + 𝑀 ≠ 1 + 𝑀 ⟺ 1 ∉ 𝑀 ⟺ 𝑀 ≠ 𝑅

Also, for 𝑟 ∈ 𝑅, note that 𝑟 ∉ 𝑀  iff 𝑟 + 𝑀 ≠ 0 + 𝑀 . Thus we have

𝑀 is a maximal ideal
⟺ ⟨𝑟⟩ + 𝑀 = 𝑅 for any 𝑟 ∉ 𝑀
⟺ 1 ∈ ⟨𝑟⟩ + 𝑀 for all 𝑟 ∉ 𝑀
⟺ ∀𝑟 ∉ 𝑀, there exists 𝑠 ∈ 𝑅 s.t. 1 + 𝑀 = 𝑟𝑠 + 𝑀
⟺ ∀𝑟 + 𝑀 ≠ 0 + 𝑀, there exists 𝑠 + 𝑀 ∈ 𝑅/𝑀 s.t. (𝑟 + 𝑀)(𝑠 + 𝑀) = 1 + 𝑀
⟺ 𝑅/𝑀 is a field

☐

Combining Prop 9.2, 9.5 and 9.6, we have

Corollary 9.7

Every maximal ideal of a commutative ring is a prime ideal.

Remark

The converse of Cor 9.7 is not true. For example, in ℤ, {0} is a prime ideal, but not a max ideal.

Example 9.2.3

Consider the ideal ⟨𝑥2 + 1⟩ in the ring ℤ[𝑥]. The map 𝜃 : ℤ[𝑥] → ℤ[𝑖] defined by 𝜃(𝑓(𝑥)) = 𝑓(𝑖) 
is surjective since 𝜃(𝑎 + 𝑏𝑥) = 𝑎 + 𝑏𝑖. Also, one can check that the kernel of the map is ⟨𝑥2 + 1⟩ 

(see Piazza). By the first isomorphism theorem, we have ℤ[𝑥]/⟨𝑥2 + 1⟩ ≅ ℤ[𝑖]. Since ℤ[𝑖] is an 

integral domain, but not a field, we conclude that the ideal ⟨𝑥2 + 1⟩ is prime, but not maximal. 

Note that ⟨𝑥2 + 1⟩ ⊊ ⟨𝑥2 + 1, 3⟩ ⊊ ℤ[𝑥]. We have ℤ[𝑥]/⟨𝑥2 + 1, 3⟩ ≅ ℤ3[𝑥]/⟨𝑥2 + 1⟩ and 

𝑥2 + 1 is irreducible in ℤ3[𝑥].
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9.3 Fields of Fractions

Let 𝑅 be an integral domain. We now construct a field 𝐹  of all fractions 𝑟𝑠  from 𝑅.

Let 𝑅 be an integral domain and let 𝐷 = 𝑅 ∖ {0}. Consider the set 𝑋 = 𝑅 × 𝐷. We say 

(𝑟, 𝑠) ≡ (𝑟1, 𝑠1) on 𝑋 iff 𝑟𝑠1 = 𝑟1𝑠. One can show that ≡ is an equivalence relation on 𝑋. Motivated 

by the case 𝑅 = ℤ, we now define the fraction 𝑟𝑠  to be the equivalence class [(𝑟, 𝑠)] of the pair (𝑟, 𝑠) on 

𝑋. Let 𝐹  denote the set of all these fractions, i.e.

𝐹 = {𝑟
𝑠

| 𝑟 ∈ 𝑅, 𝑠 ∈ 𝐷} = {𝑟
𝑠

| 𝑟, 𝑠 ∈ 𝑅, 𝑠 ≠ 0}

The addition and multiplication of 𝐹  are defined by

𝑟
𝑠

+ 𝑟1
𝑠1

= 𝑟𝑠1 + 𝑟1𝑠
𝑠𝑠1

and 𝑟
𝑠

⋅ 𝑟1
𝑠1

= 𝑟𝑟1
𝑠𝑠1

Note that 𝑠𝑠1 ≠ 0 since 𝑅 is an integral domain and thus these operations are well-defined. Then one 

can show that with the above defined addition and multiplication, 𝐹  becomes a field with the zero 

being 01 , the unity 11 , the negative of 𝑟𝑠  is −𝑟
𝑠 . Moreover, if 𝑟𝑠 ≠ 0 in 𝐹 , then 𝑟 ≠ 0 and thus 𝑠𝑟 ∈ 𝐹  and 

we have

𝑟
𝑠

⋅ 𝑠
𝑟

= 𝑟𝑠
𝑠𝑟

= 𝑟𝑠
𝑟𝑠

= 1
1

∈ 𝐹

In addition, we have 𝑅 ≅ 𝑅′ where 𝑅′ = {𝑟
1 | 𝑟 ∈ 𝑅} ⊆ 𝐹 . Thus we have

Theorem 9.8

Let 𝑅 be an integral domain. Then there exists a field 𝐹  consisting of fractions 𝑟𝑠  with 𝑟, 𝑠 ∈ 𝑅 

and 𝑠 ≠ 0. By identifying 𝑟 = 𝑟
1  for all 𝑟 ∈ 𝑅, we can view 𝑅 as a subring of 𝐹 . The field 𝐹  is 

called the field of fractions of 𝑅.

10 Polynomial Rings

10.1 Polynomials

Let 𝑅 be a ring and 𝑥 a variable. Let

𝑅[𝑥] = {𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑚𝑥𝑚 | 𝑚 ∈ ℕ ∪ {0} and 𝑎𝑖 ∈ 𝑅 (0 ≤ 𝑖 ≤ 𝑚)}

Such 𝑓(𝑥) is called a polynomial in 𝑥 over 𝑅. If 𝑎𝑚 ≠ 0, we say 𝑓(𝑥) has degree 𝑚, denoted by 

deg 𝑓 = 𝑚, and we say the 𝑎𝑚 is leading coefficient of 𝑓(𝑥). If the leading coefficient 𝑎𝑚 = 1, we say 

𝑓(𝑥) is monic. If deg 𝑓 = 0, then 𝑓(𝑥) = 𝑎0 ∈ 𝑅 ∖ {0}. In this case, we say 𝑓(𝑥) is a constant 

polynomial. Note that

𝑓(𝑥) = 0 ⟺ 𝑎0 = 0, 𝑎1 = 0, …

0 is also a constant polynomial and we define deg 0 = −∞. Let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑚𝑥𝑚 ∈ 𝑅[𝑥] 
and 𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + ⋯ + 𝑏𝑏𝑥𝑛 ∈ 𝑅[𝑥] with 𝑚 ≤ 𝑛. Then we write 𝑎𝑖 = 0 for all 𝑚 + 1 ≤ 𝑖 ≤ 𝑛. We 

can define addition and multiplication on 𝑅[𝑥] as follows:

𝑓(𝑥) + 𝑔(𝑥) = (𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑥 + ⋯ + (𝑎𝑛 + 𝑏𝑛)𝑥𝑛

Polynomials 61



PMATH 347 Fall 2025 Jake Edmonstone

and

𝑓(𝑥)𝑔(𝑥) = (𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑚𝑥𝑚)(𝑏0 + 𝑏1𝑥 + ⋯ + 𝑏𝑛𝑥𝑛)

= 𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0)𝑥 + (𝑎2𝑏0 + 𝑎1𝑏1 + 𝑎0𝑏2)𝑥2 + ⋯ + (𝑎𝑚𝑏𝑛)𝑥𝑚+𝑛

= 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ + 𝑐𝑚+𝑛𝑥𝑚+𝑛

where

𝑐𝑖 = 𝑎0𝑏𝑖 + 𝑎1𝑏𝑖−1 + ⋯ + 𝑎𝑖−1𝑏1 + 𝑎𝑖𝑏0

Proposition 10.1

Let 𝑅 be a ring and 𝑥 a variable

1. 𝑅[𝑥] is a ring

2. 𝑅 is a subring of 𝑅[𝑥]
3. If 𝑍 = 𝑍(𝑅) is the center of 𝑅, then 𝑍(𝑅[𝑥]) = 𝑍[𝑥]

Proof: (1) and (2) are left as exercises. ☐

Proof of 3: Let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑚𝑥𝑚 ∈ 𝑍[𝑥] and 𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + ⋯ + 𝑏𝑛𝑥𝑛 ∈ 𝑅[𝑥]. We 

have

𝑓(𝑥)𝑔(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ + 𝑐𝑚+𝑛𝑥𝑚+𝑛

with

𝑐𝑖 = 𝑎0𝑏𝑖 + 𝑎1𝑏𝑖−1 + ⋯ + 𝑎𝑖−1𝑏1 + 𝑎𝑖𝑏0

Since 𝑎𝑖 ∈ 𝑍 , we have 𝑎𝑖𝑏𝑗 = 𝑎𝑗𝑏𝑖 for all 𝑖, 𝑗. Thus we get 𝑓(𝑥)𝑔(𝑥) = 𝑔(𝑥)𝑓(𝑥) for all 𝑔(𝑥) ∈ 𝑅[𝑥] and 

hence 𝑍[𝑥] ⊆ 𝑍(𝑅[𝑥]). To show the other inclusion, if ℎ(𝑥) = 𝑐0 + 𝑐1𝑥 + … + 𝑐𝑠𝑥𝑠 ∈ 𝑍(𝑅[𝑥]), then 

for all 𝑟 ∈ 𝑅, we have ℎ(𝑥)𝑟 = 𝑟ℎ(𝑥). Thus, 𝑐𝑖𝑟 = 𝑟𝑐𝑖 for all 𝑟 ∈ 𝑅 and 0 ≤ 𝑖 ≤ 𝑠. Thus, 𝑐𝑖 ∈ 𝑍 and 

𝑍(𝑅[𝑥]) ⊆ 𝑍[𝑥]. It follows that 𝑍(𝑅[𝑥]) = 𝑍[𝑥]. ☐

Warning

Although 𝑓(𝑥) ∈ 𝑅[𝑥] can be used to define a function from 𝑅 to 𝑅, the polynomial is not the 

same as the function it defines. For example, if 𝑅 = ℤ2, there are only 4 different functions from 

ℤ2 to ℤ2. However, the polynomial ring ℤ2[𝑥] is an infinite set.

Proposition 10.2

Let 𝑅 be an integral domain. Then

1. 𝑅[𝑥] is an integral domain.

2. If 𝑓 ≠ 0 and 𝑔 ≠ 0 in 𝑅[𝑥], then

deg(𝑓𝑔) = deg(𝑓) + deg(𝑔) (product formula)
3. The units in 𝑅[𝑥] are 𝑅∗, the units in 𝑅.

Proof of 1,2: Suppose that 𝑓(𝑥) ≠ 0 and 𝑔(𝑥) ≠ 0 are polynomials in 𝑅[𝑥], say 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑚𝑥𝑚 and 𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + ⋯ + 𝑏𝑛𝑥𝑛 with 𝑎𝑚 ≠ 0 and 𝑎𝑛 ≠ 0. Then
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𝑓(𝑥)𝑔(𝑥) = (𝑎𝑚𝑏𝑛)𝑥𝑚+𝑛 + ⋯ + 𝑎0𝑏0

Since 𝑅 is an integral domain, 𝑎𝑚𝑏𝑛 ≠ 0 and thus 𝑓(𝑥)𝑔(𝑥) ≠ 0. It follows that 𝑅[𝑥] is an integral 

domain. Moreover,

deg(𝑓𝑔) = deg(𝑓) + deg(𝑔)

Thus (1) and (2) follow. ☐

Proof of 3: Let 𝑢(𝑥) ∈ 𝑅[𝑥] be a unit with inverse 𝑣(𝑥). Since 𝑢(𝑥)𝑣(𝑥) = 1, by (2) we have

deg(𝑢) + deg(𝑣) = deg 1 = 0

Since 𝑢(𝑥)𝑣(𝑥) = 1, we have 𝑢(𝑥) ≠ 0 and 𝑣(𝑥) ≠ 0. Since deg 𝑢 ≥ 0 and deg 𝑣 ≥ 0, the above 

equation implies that deg 𝑢 = 0 = deg 𝑣. Thus 𝑢(𝑥), 𝑣(𝑥) are units in 𝑅 and hence 𝑅[𝑥]∗ ⊆ 𝑅∗. Since 

𝑅∗ ⊆ 𝑅[𝑥]∗, we have 𝑅[𝑥]∗ = 𝑅∗. ☐

Remark

Note that in ℤ4[𝑥], we have 2𝑥 ⋅ 2𝑥 = 4𝑥2 = 0 thus the product formula doesn’t hold here since 

ℤ4 is not an integral domain.

Remark

To extend the product formula in Prop 10.2 to 0, we define deg 0 = ±∞.

10.2 Polynomials Over a Field

Definition 10.2.1

Let 𝐹  be a field and 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐹 [𝑥]. We say 𝑓(𝑥) divides 𝑔(𝑥), denoted by 𝑓(𝑥) ∣ 𝑔(𝑥), if there 

exists 𝑞(𝑥) ∈ 𝐹 [𝑥] such that 𝑔(𝑥) = 𝑞(𝑥)𝑓(𝑥).

Proposition 10.3

Let 𝐹  be a field. 𝑓(𝑥), 𝑔(𝑥), ℎ(𝑥) ∈ 𝐹 [𝑥].
1. If 𝑓(𝑥) ∣ 𝑔(𝑥) and 𝑔(𝑥) ∣ ℎ(𝑥), then 𝑓(𝑥) ∣ ℎ(𝑥). (transitivity of divisibility)

2. If 𝑓(𝑥) ∣ 𝑔(𝑥) and 𝑓(𝑥) ∣ 𝑔(𝑥), then 𝑓(𝑥) ∣ (𝑔(𝑥)𝑢(𝑥) + ℎ(𝑥)𝑣(𝑥)) for any 

𝑢(𝑥), 𝑣(𝑥) ∈ 𝐹 [𝑥] (divisibility of integer combinations)

Recall

For 𝑎, 𝑏 ∈ ℤ if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎 and 𝑎, 𝑏 > 0, then 𝑎 = 𝑏. The following is its analogue in 𝐹[𝑥]

Proposition 10.4

Let 𝐹  be a field and 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐹 [𝑥] be monic polynomials. If 𝑓(𝑥) ∣ 𝑔(𝑥) and 𝑔(𝑥) ∣ 𝑓(𝑥), then 

𝑓(𝑥) = 𝑔(𝑥).
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Proof: Since 𝑓(𝑥) ∣ 𝑔(𝑥) and 𝑔(𝑥) ∣ 𝑓(𝑥), we have 𝑔(𝑥) = 𝑟(𝑥)𝑓(𝑥) and 𝑓(𝑥) = 𝑠(𝑥)𝑔(𝑥) for some 

𝑟(𝑥), 𝑠(𝑥) ∈ 𝐹 [𝑥]. Then 𝑓(𝑥) = 𝑠(𝑥)𝑟(𝑥)𝑓(𝑥). By Prop 10.2, we have deg 𝑓 = deg 𝑠 + deg 𝑟 + deg 𝑓 , 

which implies that deg 𝑠 = deg 𝑟 = 0. Thus 𝑓(𝑥) = 𝑠𝑔(𝑥) for some 𝑠 ∈ 𝐹 . Since both 𝑓(𝑥) and 𝑔(𝑥) are 

monic, we have 𝑠 = 1 and hence 𝑓(𝑥) = 𝑔(𝑥). ☐

Proposition 10.5 Division Algorithm

Let 𝐹  be a field and 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐹 [𝑥] with 𝑓(𝑥) ≠ 0. Then there exist unique 𝑞(𝑥), 𝑟(𝑥) ∈ 𝐹 [𝑥] 
such that

𝑔(𝑥) = 𝑞(𝑥)𝑓(𝑥) + 𝑟(𝑥) with deg 𝑟 < deg 𝑓

Note that this includes the case for 𝑟 = 0 (this explains why we define deg 0 = −∞).

Proof: We first prove by induction that such 𝑞(𝑥) and 𝑟(𝑥) exist. Write 𝑚 = deg 𝑓  and 𝑛 = deg 𝑔. If 

𝑛 < 𝑚, then 𝑔(𝑥) = 0 ⋅ 𝑓(𝑥) + 𝑔(𝑥). Suppose 𝑛 ≥ 𝑚 and the result holds for all 𝑔(𝑥) ∈ 𝐹 [𝑥] with 

deg 𝑔 < 𝑛. Write 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑚𝑥𝑚 with 𝑎𝑚 ≠ 0 and 𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + ⋯ + 𝑏𝑛𝑥𝑛. Since 

𝐹  is a field, 𝑎−1
𝑚  exists. Consider

𝑔1(𝑥) = 𝑔(𝑥) − 𝑏𝑛𝑎−1
𝑚 𝑥𝑛−𝑚𝑓(𝑥)

= (𝑏𝑛𝑥𝑛 + 𝑏𝑛−1𝑥𝑛−1 + ⋯ + 𝑏0) − 𝑏𝑛𝑎−1
𝑚 𝑥𝑛−𝑚(𝑎𝑚𝑥𝑚 + ⋯ + 𝑎1𝑥 + 𝑎0)

= 0 ⋅ 𝑥𝑛 + (𝑏𝑛−1 − 𝑏𝑛𝑎−1
𝑚 𝑎𝑚−1)𝑥𝑛−1 + ⋯

Since deg 𝑔1 < 𝑛, by induction, there exist 𝑞1(𝑥), 𝑟1(𝑥) ∈ 𝐹 [𝑥] such that 𝑔1(𝑥) = 𝑞1(𝑥)𝑓(𝑥) + 𝑟1(𝑥) 
with deg 𝑟1 < deg 𝑓 . It follows that

𝑔(𝑥) = 𝑞1(𝑥) + 𝑏𝑛𝑎−1
𝑚 𝑥𝑛−𝑚𝑓(𝑥)

= (𝑞1(𝑥)𝑓(𝑥) + 𝑟1(𝑥)) + 𝑏𝑛𝑎−1
𝑚 𝑥𝑛−𝑚𝑓(𝑥)

= (𝑞1(𝑥) + 𝑏𝑛𝑎−1
𝑚 𝑥𝑛−𝑚)𝑓(𝑥) + 𝑟1(𝑥)

By taking 𝑞(𝑥) = 𝑞1(𝑥) + 𝑏𝑛𝑎−1
𝑚 𝑥𝑛−𝑚 and 𝑟(𝑥) = 𝑟1(𝑥), we have

𝑔(𝑥) = 𝑞(𝑥)𝑓(𝑥) + 𝑟(𝑥) with deg 𝑟 < deg 𝑓

To prove uniqueness, suppose that we have 𝑔(𝑥) = 𝑞1(𝑥)𝑓(𝑥) + 𝑟1(𝑥) with deg 𝑟1 < deg 𝑓 . Then

𝑟(𝑥) − 𝑟1(𝑥) = (𝑞1(𝑥) − 𝑞(𝑥))𝑓(𝑥).

If 𝑞1(𝑥) − 𝑞(𝑥) ≠ 0, we get

deg(𝑟 − 𝑟1) = deg((𝑞1 − 𝑞)𝑓) = deg(𝑞1 − 𝑞) + deg 𝑓 ≥ deg 𝑓

which leads to a contradiction since deg(𝑟 − 𝑟1) < deg 𝑓 . Thus 𝑞1(𝑥) − 𝑞(𝑥) = 0 and hence 

𝑟(𝑥) − 𝑟1(𝑥) = 0. It follows that 𝑞1(𝑥) = 𝑞(𝑥) and 𝑟1(𝑥) = 𝑟(𝑥). ☐

Note

For 𝑎, 𝑏 ∈ ℤ ∖ {0}, the Bézout Lemma states that gcd(𝑎, 𝑏) = 𝑎𝑥 + 𝑏𝑦 for some 𝑥, 𝑦 ∈ ℤ.
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Proposition 10.6

Let 𝐹  be a field and 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐹 [𝑥] ∖ {0}. Then there exists 𝑑(𝑥) ∈ 𝐹 [𝑥] which satisfies the 

following conditions:

1. 𝑑(𝑥) is monic

2. 𝑑(𝑥) ∣ 𝑓(𝑥) and 𝑑(𝑥) ∣ 𝑔(𝑥)
3. If 𝑒(𝑥) ∣ 𝑓(𝑥) and 𝑒(𝑥) ∣ 𝑔(𝑥), then 𝑒(𝑥) ∣ 𝑑(𝑥)
4. 𝑑(𝑥) = 𝑢(𝑥)𝑓(𝑥) + 𝑣(𝑥)𝑔(𝑥) for some 𝑢(𝑥), 𝑣(𝑥) ∈ 𝐹 [𝑥]

Note that if both 𝑑(𝑥) and 𝑑1(𝑥) satisfy the above conditions, since 𝑑(𝑥) ∣ 𝑑1(𝑥) and 

𝑑1(𝑥) ∣ 𝑑(𝑥) and both of them are monic, By prop 10.4, we have 𝑑(𝑥) = 𝑑1(𝑥). We call such 𝑑(𝑥) 
the greatest common divisor of 𝑓(𝑥) and 𝑔(𝑥) denote it by 𝑑(𝑥) = gcd(𝑓(𝑥), 𝑔(𝑥))

Proof: Consider the set 𝑋 = {𝑢(𝑥)𝑓(𝑥) + 𝑣(𝑥)𝑔(𝑥), 𝑢(𝑥), 𝑣(𝑥) ∈ 𝐹 [𝑥]}. Since 𝑓(𝑥) ∈ 𝑋, the set 𝑋 

contains nonzero polynomials and thus monic polynomials (since 𝐹  is a field, if ℎ(𝑥) ∈ 𝑋 with leading 

coefficient 𝑎, then 𝑎−1ℎ(𝑥) ∈ 𝑋 is monic). Among all monic polynomials in 𝑋, choose 

𝑑(𝑥) = 𝑢(𝑥)𝑓(𝑥) + 𝑣(𝑥)𝑔(𝑥) of minimal degree. Then (1) and (4) are satisfied. For (3), if 𝑒(𝑥) ∣ 𝑓(𝑥) and 

𝑒(𝑥) ∣ 𝑔(𝑥), since 𝑑(𝑥) = 𝑢(𝑥)𝑓(𝑥) + 𝑣(𝑥)𝑔(𝑥) by prop 10.3, 𝑒(𝑥) ∣ 𝑑(𝑥). It remains to prove (2). By the 

division algorithm, write 𝑓(𝑥) = 𝑞(𝑥)𝑑(𝑥) + 𝑟(𝑥) with deg 𝑟 < deg 𝑑. Then

𝑟(𝑥) = 𝑓(𝑥) − 𝑞(𝑥)𝑑(𝑥)
= 𝑓(𝑥) − 𝑞(𝑥)(𝑢(𝑥)𝑓(𝑥) + 𝑣(𝑥)𝑔(𝑥))
= (1 − 𝑞(𝑥)𝑢(𝑥))𝑓(𝑥) − (𝑞(𝑥)𝑣(𝑥))𝑔(𝑥)

Note that if 𝑟(𝑥) ≠ 0, write 𝑐 ≠ 0 be the leading coefficient of 𝑟(𝑥). Since 𝐹  is a field, 𝑐−1 exists. The 

above expression shows that 𝑐−1𝑟(𝑥) is a monic polynomial of 𝑋 with deg(𝑐−1𝑟) = deg 𝑟 < deg 𝑑, 

which contradicts the choice of 𝑑(𝑥). Thus 𝑟(𝑥) = 0 and we have 𝑑(𝑥) ∣ 𝑓(𝑥). Similarly, we can show 

𝑑(𝑥) ∣ 𝑔(𝑥). Thus (2) follows. ☐

Recall

𝑝 ∈ ℤ is a prime if 𝑝 ≥ 2 and whenever 𝑝 = 𝑎𝑏 with 𝑎, 𝑏 ∈ ℤ, then 𝑎 = ±1 or 𝑏 = ±1 (note that 

±1 are the units of ℤ).

Definition 10.2.2

If 𝐹  is a field, a polynomial ℓ(𝑥) ≠ 0 in 𝐹[𝑥] is irreducible if deg ℓ ≥ 1 and whenever 

ℓ(𝑥) = ℓ1(𝑥)ℓ2(𝑥) in 𝐹[𝑥], we have deg ℓ1 = 0 or deg ℓ2 = 0 (deg 0 polynomials are the units in 

𝐹[𝑥]). Polynomials that are not irreducible are reducible.

Example 10.2.1

If ℓ(𝑥) ∈ 𝐹 [𝑥] satisfies deg ℓ = 1, then ℓ(𝑥) is irreducible.
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Exercise 10.2.1

One can show that if deg 𝑓 ∈ {2, 3}, then 𝑓  is irreducible iff 𝑓(𝑑) ≠ 0 for all 𝑑 ∈ 𝐹 .

Example 10.2.2

Let ℓ(𝑥), 𝑓(𝑥) ∈ 𝐹 [𝑥]. If ℓ(𝑥) is irreducible and ℓ(𝑥) ∤ 𝑓(𝑥) then gcd(ℓ(𝑥), 𝑓(𝑥)) = 1

Recall

Given a prime 𝑝 ∈ ℤ and 𝑎, 𝑏 ∈ ℤ, Euclid’s Lemma states that if 𝑝 ∣ 𝑎𝑏 then 𝑝 ∣ 𝑎 or 𝑝 ∣ 𝑏.

Proposition 10.7

Let 𝐹  be a field and 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐹 [𝑥]. If ℓ(𝑥) ∈ 𝐹 [𝑥] is irreducible and ℓ ∣ 𝑓(𝑥)𝑔(𝑥), then 

ℓ(𝑥) ∣ 𝑓(𝑥) or ℓ(𝑥) ∣ 𝑔(𝑥).

Proof: Suppose ℓ(𝑥) ∣ 𝑓(𝑥)𝑔(𝑥). Two cases:

1. If ℓ(𝑥) ∣ 𝑓(𝑥) then we are done.

2. If ℓ(𝑥) ∤ 𝑓(𝑥), then 𝑑(𝑥) = gcd(ℓ(𝑥), 𝑓(𝑥)) = 1. By Prop 10.6, we have

1 = ℓ(𝑥)𝑢(𝑥) + 𝑓(𝑥)𝑣(𝑥) for some 𝑢(𝑥), 𝑣(𝑥) ∈ 𝐹 [𝑥]

Then

𝑔(𝑥) = 𝑔(𝑥)ℓ(𝑥)𝑢(𝑥) + 𝑔(𝑥)𝑓(𝑥)𝑣(𝑥)

Since ℓ(𝑥) ∣ ℓ(𝑥) and ℓ(𝑥) ∣ 𝑓(𝑥)𝑔(𝑥), By prop 10.3, we have ℓ(𝑥) ∣ 𝑔(𝑥).

☐

Remark

Let 𝑓1(𝑥), …, 𝑓𝑛(𝑥) ∈ 𝐹 [𝑥] and let ℓ(𝑥) ∈ 𝐹 [𝑥] be irreducible. If ℓ(𝑥) ∣ 𝑓1(𝑥)⋯𝑓𝑛(𝑥), by 

applying Prop 10.7 repeatedly, we get ℓ(𝑥) ∣ 𝑓𝑖(𝑥) for some 𝑖.

Recall

For an integer 𝑛 ∈ ℤ with |𝑛| ≥ 2, up to ±1 sign, 𝑛 can be written uniquely as a product of 

primes. By induction and Prop 10.7, we have the following analogous result in 𝐹[𝑥].

Theorem 10.8 Unique Factorization Theorem

Let 𝐹  be a field and 𝑓(𝑥) ∈ 𝐹 [𝑥] with deg 𝑓 ≥ 1. Then we can write 𝑓(𝑥) = 𝑐ℓ1(𝑥)⋯ℓ𝑚(𝑥) 
where 𝑐 ∈ 𝐹 ∗ and ℓ𝑖(𝑥) are monic, irreducible polynomials (not necessarily distinct.) The 

formulation is unique up to the order of ℓ𝑖.
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Exercise 10.2.2

Use Theorem 10.8 to prove there are infinitely many irreducible polynomials in 𝐹[𝑥].

Recall

In ℤ, all ideals are of the form ⟨𝑛⟩ = 𝑛ℤ and if 𝑛 ∈ ℕ, then 𝑛 is uniquely determined.

Proposition 10.9

Let 𝐹  be a field. Then all ideals of 𝐹[𝑥] are of the form ⟨ℎ(𝑥)⟩ = ℎ(𝑥)𝐹 [𝑥] for some ℎ(𝑥) ∈ 𝐹 [𝑥]. 
If ⟨ℎ(𝑥)⟩ ≠ 0 and ℎ(𝑥) is monic, then the generator is uniquely determined.

Proof: Let 𝐴 be an ideal of 𝐹[𝑥]. If 𝐴 = {0}, then 𝐴 = ⟨0⟩. If 𝐴 ≠ {0}, then it contains a monic 

polynomial (since 𝐹  is a field, if 𝑓 ∈ 𝐴 with leading coefficient 𝑎, then 𝑎−1𝑓 ∈ 𝐴). Among all monic 

polynomials in 𝐴, choose ℎ(𝑥) ∈ 𝐴 of minimum degree. Then ⟨ℎ(𝑥)⟩ ⊆ 𝐴. To prove the other 

inclusion, let 𝑓(𝑥) ∈ 𝐴. By the division algorithm, we have 𝑓(𝑥) = 𝑞(𝑥)ℎ(𝑥) + 𝑟(𝑥) with 

𝑞(𝑥), 𝑟(𝑥) ∈ 𝐹 [𝑥] and deg 𝑟 < deg ℎ. If 𝑟(𝑥) ≠ 0, let 𝑢 ≠ 0 be its leading coefficient. Since 𝐴 is an ideal 

and 𝑓(𝑥), ℎ(𝑥) ∈ 𝐴 we have 𝑢−1𝑟(𝑥) = 𝑢−1(𝑓(𝑥) − 𝑞(𝑥)ℎ(𝑥)) = 𝑢−1𝑓(𝑥) − 𝑢−1𝑞(𝑥)ℎ(𝑥) ∈ 𝐴 which 

is a monic polynomial in 𝐴 with deg(𝑢−1𝑟) < deg ℎ. This contradicts the minimum property of deg ℎ. 

Thus 𝑟(𝑥) = 0 and 𝑓(𝑥) = 𝑞(𝑥)ℎ(𝑥). It follows that 𝑓(𝑥) ∈ ⟨ℎ(𝑥)⟩ and hence 𝐴 = ⟨ℎ(𝑥)⟩. To prove 

uniqueness, suppose 𝐴 = ⟨ℎ(𝑥)⟩ = ⟨ℎ1(𝑥)⟩. Since ℎ(𝑥) ∣ ℎ1(𝑥) and ℎ1(𝑥) ∣ ℎ(𝑥) and both of them are 

monic, my Prop 10.4, we have ℎ(𝑥) = ℎ1(𝑥). ☐

Recall

We have seen in ℤ that all ideals are of the form ⟨𝑛⟩ for some 𝑛 ∈ ℤ. For 𝑛 ≥ 2, if we divide an 

integer by 𝑛, the remainder 𝑟 ∈ {0, 1, …, 𝑛 − 1}. Write ⟨𝑛⟩ = 𝑛ℤ. Then we have

ℤ𝑛 = ℤ/⟨𝑛⟩ = {0 + ⟨𝑛⟩, …, (𝑛 − 1) + ⟨𝑛⟩} = {[0], …, [𝑛 − 1]}

We now consider its analogue in 𝐹[𝑥]. Let 𝐹  be a field. By Prop 10.9, all ideals of 𝐹[𝑥] are of the form 

⟨ℎ(𝑥)⟩. Suppose that ℎ(𝑥) is monic and deg ℎ = 𝑚 ≥ 1. Consider the quotient ring 𝑅 = 𝐹[𝑥]/⟨ℎ(𝑥)⟩ 
and thus

𝑅 = {𝑓(𝑥) ≔ 𝑓(𝑥) + ⟨ℎ(𝑥)⟩ | 𝑓(𝑥) ∈ 𝐹 [𝑥]}

Write 𝑡 = 𝑥 = 𝑥 + ⟨ℎ(𝑥)⟩. We have ℎ(𝑡) = 0 in 𝑅 (exercise). By the division algorithm, we can write 

𝑓(𝑥) = 𝑞(𝑥)ℎ(𝑥) + 𝑟(𝑥) with deg 𝑟 < deg ℎ = 𝑚. Thus one can show that

𝑅 = {𝑎0 + 𝑎1𝑡 + ⋯ + 𝑎𝑚−1𝑡𝑚−1 | 𝑎𝑖 ∈ 𝐹 and ℎ(𝑡) = 0}

Consider the map 𝜃 : 𝐹 → 𝑅 given by 𝜃(𝑎) = 𝑎. Since 𝜃 is not the zero map and ker 𝜃 is an ideal of 𝐹 , 

we have ker 𝜃 = {0}. Thus 𝜃 is an injective ring homomorphism. Since 𝐹 ≅ 𝜃(𝐹), by identifying 𝐹  

with 𝜃(𝐹), we have

𝑅 = {𝑎0 + 𝑎1𝑡 + ⋯ + 𝑎𝑚−1𝑡𝑚−1 | 𝑎𝑖 ∈ 𝐹 and ℎ(𝑡) = 0}
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Note that in 𝑅 we have

𝑎0 + 𝑎1𝑡 + ⋯ + 𝑎𝑚−1𝑡𝑚−1 = 𝑏0 + 𝑏1𝑡 + ⋯ + 𝑏𝑚−1𝑡𝑚−1 ⟺ 𝑎𝑖 = 𝑏𝑖 (∀ 0 ≤ 𝑖 ≤ 𝑚 − 1)

Hence this representation of the elements in 𝑅 is unique.

Proposition 10.10

Let 𝐹  be a field and ℎ(𝑥) ∈ 𝐹 [𝑥] be monic with deg ℎ = 𝑚 ≥ 1. Then the quotient ring 

𝑅 = 𝐹[𝑥]/⟨ℎ(𝑥)⟩ is given by

𝑅 = {𝑎0 + 𝑎1𝑡 + ⋯ + 𝑎𝑚−1𝑡𝑚−1 | 𝑎𝑖 ∈ 𝐹 and ℎ(𝑡) = 0}

in which an element of 𝑅 can be uniquely represented by the above form.

Example 10.2.3

Consider the ring ℝ[𝑥]. Let ℎ(𝑥) = 𝑥2 + 1 ∈ ℝ[𝑥]. By Prop 10.10, we have

ℝ[𝑥]/⟨𝑥2 + 1⟩ = {𝑎 + 𝑏𝑡 | 𝑎, 𝑏 ∈ ℝ and 𝑡2 + 1 = 0} ≅ ℂ

Proposition 10.11

Let 𝐹  be a field and ℎ(𝑥) ∈ 𝐹 [𝑥] with deg ℎ ≥ 1. The following are equivalent:

1. 𝐹[𝑥]/⟨ℎ(𝑥)⟩ is a field.

2. 𝐹[𝑥]/⟨ℎ(𝑥)⟩ is a integral domain.

3. ℎ(𝑥) is irreducible in 𝐹[𝑥]

Proof: Write 𝐴 = ⟨ℎ(𝑥)⟩
(1 ⟹ 2) Every field is an integral domain.

(2 ⟹ 3) If ℎ(𝑥) = 𝑓(𝑥)𝑔(𝑥) with 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐹 [𝑥], then

(𝑓(𝑥) + 𝐴)(𝑔(𝑥) + 𝐴) = 𝑓(𝑥)𝑔(𝑥) + 𝐴 = ℎ(𝑥) + 𝐴 = 0 + 𝐴 in 𝐹 [𝑥]/𝐴

By (2), either 𝑓(𝑥) + 𝐴 = 0 + 𝐴 or 𝑔(𝑥) + 𝐴 = 0 + 𝐴, i.e. either 𝑓(𝑥) ∈ 𝐴 or 𝑔(𝑥) ∈ 𝐴. If 

𝑓(𝑥) ∈ 𝐴 = ⟨ℎ(𝑥)⟩, then 𝑓(𝑥) = 𝑞(𝑥)ℎ(𝑥) for some 𝑞(𝑥) ∈ 𝐹 [𝑥]. Thus 

ℎ(𝑥) = 𝑓(𝑥)𝑔(𝑥) = 𝑞(𝑥)ℎ(𝑥)𝑔(𝑥). Since 𝐹[𝑥] is an integral domain, this implies that 𝑞(𝑥)ℎ(𝑥) = 1, 

which implies that deg 𝑔 = 0. Similarly, if 𝑔(𝑥) ∈ 𝐴, then deg 𝑓 = 0. Thus ℎ(𝑥) is irreducible in 𝐹[𝑥].
(3 ⟹ 1) Note that 𝐹[𝑥]/𝐴 is a commutative ring. Thus to show that it is a field, it suffices to show that 

every nonzero element of 𝐹[𝑥]/𝐴 has an inverse. Let 𝑓(𝑥) + 𝐴 ≠ 0 + 𝐴 with 𝑓(𝑥) ∈ 𝐹 [𝑥]. Then 

𝑓(𝑥) ∉ 𝐴 and hence ℎ(𝑥) ∤ 𝑓(𝑥). Since ℎ(𝑥) is irreducible and ℎ(𝑥) ∤ 𝑓(𝑥), we have 

gcd(𝑓(𝑥), ℎ(𝑥)) = 1. By Prop 10.6, there exist 𝑢(𝑥), 𝑣(𝑥) ∈ 𝐹 [𝑥] such that 1 = 𝑢(𝑥)ℎ(𝑥) + 𝑣(𝑥)𝑓(𝑥). 
Thus (𝑣(𝑥) + 𝐴)(𝑓(𝑥) + 𝐴) = 1 + 𝐴 (since ℎ(𝑥) ∈ 𝐴). It follows that 𝑓(𝑥) + 𝐴 has an inverse in 

𝐹[𝑥]/𝐴 and hence 𝐹[𝑥]/𝐴 is a field. ☐

Example 10.2.4

Since ℝ[𝑥]/⟨𝑥2 + 1⟩ ≅ ℂ, which is a field, the polynomial 𝑥2 + 1 is irreducible in ℝ[𝑥].
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Example 10.2.5

Since 𝑥2 + 𝑥 + 1 has no root in ℤ2 (since 0 and 1 are not roots), it is irreducible in ℤ2[𝑥]. Thus 

ℤ2[𝑥]/⟨𝑥2 + 𝑥 + 1⟩ = {𝑎 + 𝑏𝑡 | 𝑎, 𝑏 ∈ ℤ2 and 𝑡2 + 𝑡 + 1 = 0} is a field of 4 elements.

Remark

Before the previous example, the only finite fields we know are of the form ℤ𝑝 where 𝑝 is a 

prime. We have seen before that there are infinitely many irreducible polynomials in ℤ𝑝[𝑥]. One 

can show that for any 𝑛 ∈ ℕ, there exists at least one irreducible polynomial of degree 𝑛 in 

ℤ𝑝[𝑥], say 𝑓𝑛(𝑥). Since 𝑓𝑛(𝑥) is irreducible, ℤ𝑝[𝑥]/⟨𝑓𝑛(𝑥)⟩ is a field of order 𝑝𝑛. Note that ℤ𝑝𝑛  is 

NOT a field if 𝑛 ≥ 2.

Analogies Between ℤ and 𝐹[𝑥]

ℤ 𝐹[𝑥]
elements 𝑚 𝑓(𝑥)

size |𝑚| = absolute value deg 𝑓
units ±1; ℤ ∖ {0}/{±1}" = "ℕ 𝐹 ∗; 𝐹 [𝑥] ∖ {0}/𝐹 ∗" =

"{monic polynomials}
unique factorization 𝑚 = ±1𝑝𝛼1

1 ⋯𝑝𝛼𝑛𝑛 , 𝑝𝑖 prime 𝑓 = 𝑐ℓ𝛼1
1 ⋯ℓ𝛼𝑟𝑟 , 𝑐 ∈ 𝐹 ∗, ℓ𝑖 = ℓ𝑖(𝑡) =
monic, irreducible

ideals ⟨𝑛⟩(unique if 𝑛 ∈ ℕ) ⟨ℎ(𝑥)⟩
(unique if ℎ(𝑥) monic)

ideals ℤ/⟨𝑛⟩ is a field iff 𝑛 is a prime 𝐹 [𝑥]/⟨ℎ(𝑥)⟩ is a field iff
ℎ(𝑥) is irreducible

10.3 Fermat’s Last Theorem in 𝐹[𝑥]
The Pythagorean Theorem

We have 𝑥2 + 𝑦2 = 𝑧2. The triples (𝑥, 𝑦, 𝑧) = (3, 4, 5) and (5, 12, 13) are positive integer solutions.

Proposition 10.12 Euclid’s Formula

For 𝑎, 𝑏 ∈ ℕ with 𝑎 > 𝑏, we can take

𝑥 = 𝑎2 − 𝑏2, 𝑦 = 2𝑎𝑏, 𝑧 = 𝑎2 + 𝑏2

Then the triple (𝑥, 𝑦, 𝑧) satisfies 𝑥2 + 𝑦2 + 𝑧2 and we have infinitely many positive integer 

solutions.

Question: How about positive integer solutions for

𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛 with 𝑛 ∈ ℕ and 𝑛 ≥ 3
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Theorem 10.13 Fermat’s Last Theorem

For 𝑛 ∈ ℕ with 𝑛 ≥ 3, the equation 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛 has no solution with 𝑥, 𝑦, 𝑧 ∈ ℕ.

• The result was first claimed by Fermat in the mid 17th century without proof

• The theorem was proved by Wiles and others in 1994
• The proof involves the use of elliptic curves, modular forms and Galois representations

Let 𝐹  be a field and 𝑛 ∈ ℕ. Consider

𝑓(𝑥)𝑛 + 𝑔(𝑥)𝑛 = ℎ(𝑥)𝑛

with 𝑓(𝑥), 𝑔(𝑥), ℎ(𝑥) ∈ 𝐹 [𝑥]. We say a solution (𝑓, 𝑔, ℎ) is non-trivial if deg(𝑓), deg(𝑔), deg(ℎ) ≥ 1.

Theorem 10.14

Let 𝐹  be a field with ch(𝐹) = 0. For 𝑛 ∈ ℕ with 𝑛 ≥ 3, there is no non-trivial solutions to the 

equation

𝑓(𝑥)𝑛 + 𝑔(𝑥)𝑛 = ℎ(𝑥)𝑛

with 𝑓(𝑥), 𝑔(𝑥), ℎ(𝑥) ∈ 𝐹 [𝑥].

Proof: Suppose we have a non-trivial solution 𝑓𝑛 + 𝑔𝑛 = ℎ𝑛. By dividing all common divisors of 

𝑓, 𝑔, ℎ, we can assume (𝑓, 𝑔, ℎ) is “coprime”, i.e. gcd(𝑓, 𝑔) = gcd(𝑓, ℎ) = gcd(𝑔, ℎ) = 1. Without loss of 

generality, suppose

deg 𝑓 = deg ℎ ≥ deg 𝑔

Write 𝑓 ′ = d𝑓/ d𝑥. Since 𝑓𝑛 + 𝑔𝑛 = ℎ𝑛, by the chain rule, we have

𝑛𝑓𝑛−1𝑓 ′ + 𝑛𝑔𝑛−1𝑔′ = 𝑛ℎ𝑛−1ℎ′.

Since ch(𝐹) = 0, we have 𝑛 ⋅ 1 ≠ 0. By multiplying both sides by ℎ we get

𝑓𝑛−1𝑓 ′ℎ + 𝑔𝑛−1𝑔′ℎ = 𝑓𝑛ℎ′ + 𝑔𝑛ℎ′

⟹ 𝑓𝑛−1(𝑓 ′ℎ − 𝑓ℎ′) = 𝑔𝑛−1(𝑔ℎ′ − 𝑔′ℎ)

Since 𝑓  and 𝑔 are coprime, the above equation implies that 𝑓𝑛−1 ∣ (𝑔ℎ′ − 𝑔′ℎ). Thus

(𝑛 − 1) deg 𝑓 ≤ deg 𝑔 + deg ℎ − 1

Since deg 𝑓 = deg ℎ ≥ deg 𝑔, we have

(𝑛 − 2) deg 𝑔 ≤ (𝑛 − 2) deg 𝑓 ≤ deg 𝑔 − 1

which is a contradiction if 𝑛 ≥ 3. ☐
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Note

Let 𝑝 be a prime and consider ℤ𝑝[𝑥]. We have

(𝑓 + 𝑔)𝑝 = 𝑓𝑝 + 𝑔𝑝

Let ℎ = 𝑓 + 𝑔. Then the equation 𝑓𝑝 + 𝑔𝑝 = ℎ𝑝 has infinitely many non-trivial solutions.

Theorem 10.15

Let 𝐹  be a field with ch(𝐹) = 𝑝. For 𝑛 ∈ ℕ with 𝑛 ≥ 3 and gcd(𝑛, 𝑝) = 1, there is no non-trivial 

solutions for

𝑓𝑛 + 𝑔𝑛 = ℎ𝑛

with 𝑓, 𝑔, ℎ ∈ 𝐹 [𝑥].

10.4 Prime Number Theorem and Riemann Hypothesis in ℤ𝑝[𝑡]
Define 𝜋(𝑥) = #︎{𝑝 ≤ 𝑥 | 𝑝 prime}
Conjecture:

𝜋(𝑥) ∼ li 𝑥 = ∫
𝑥

2

d𝑡
log 𝑡

∼ 𝑥
log 𝑥

Hence the probability of primes ≤ 𝑥 is 1
log 𝑥 . For example, about 1% of 𝑛 ∈ ℕ with 𝑛 < 𝑒100 are primes.

Definition 10.4.1

For 𝑠 ∈ ℂ, the Riemann zeta function is defined to be

𝜁(𝑠) = ∑
𝑛∈ℕ

1
𝑛𝑠 = ∏

𝑝 prime
(1 + 1

𝑝𝑠 + 1
𝑝2𝑠 + ⋯) = ∏

𝑝 prime
(1 − 1

𝑝𝑠 )
−1

• Absolutely convergent for Re(𝑠) > 1
• Functional equation: relate 𝜁(𝑠) with 𝜁(1 − 𝑠)
• Analytic continuation: extend 𝜁(𝑠) to 𝑠 ∈ ℂ

Riemann Hypothesis:

All “non-trivial zeros” of 𝜁(𝑠) lie on Re(𝑠) = 1
2

Theorem 10.16 Prime Number Theorem

For any 𝑛 ∈ ℕ, we have

𝜋(𝑥) = li(𝑥) + 𝑂( 𝑥
(log 𝑥)𝑛 )

Prime Number Theorem and Riemann Hypothesis 
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Theorem 10.17 Prime Number Theorem with RH

For any 𝜀 > 0, assuming RH,

𝜋(𝑥) = li(𝑥) + 𝑂(𝑥1
2+𝜀)

Let’s consider the Prime Number Theorem in ℤ𝑝[𝑡]. For 𝑓 ∈ ℤ𝑝[𝑡], define |𝑓| = 𝑝deg 𝑓 . For 𝑠 ∈ ℂ, the 

zeta function in ℤ𝑝[𝑡] is defined to be

𝜁𝑝(𝑠) = ∑
𝑓 monic

1
|𝑓|𝑠

= ∏
ℓ monic

irreducible

(1 − 1
|ℓ|𝑠

)
−1

Note that

#︎{𝑓 | 𝑓 monic, deg 𝑓 = 𝑑} = 𝑝𝑑

So

𝜁𝑝(𝑠) = ∑
∞

𝑑=0

𝑝𝑑

(𝑝𝑑)𝑠 = 1
1 − 𝑝1−𝑠

• Functional equation: relate 𝜁𝑝(𝑠) with 𝜁𝑝(1 − 𝑠)
• Analytic continuation: extend 𝜁𝑝(𝑠) to 𝑠 ∈ ℂ

Define 𝑎𝑑 = #︎{ℓ | ℓ monic, irreducible, deg ℓ = 𝑑}. Then we have

𝜁𝑝(𝑠) = ∏
∞

𝑑=1
(1 − 1

(𝑝𝑑)𝑠 )
−𝑎𝑑

Write 𝑇 = 𝑝−𝑠. Then

𝜁𝑝(𝑠) = 1
1 − 𝑝𝑇

= ∏
∞

𝑑=1
(1 − 𝑇 𝑑)−𝑎𝑑

Note that by taking logarithmic derivative,

(log( 1
1 − 𝑝𝑇

))
′

= 𝑝
1 − 𝑝𝑇

By taking logarithmic derivatives and multiplying by 𝑇 , we have

𝑝𝑇
1 − 𝑝𝑇

= ∑
∞

𝑑=1

𝑑𝑎𝑑𝑇 𝑑

1 − 𝑇 𝑑

By expanding both sides into power series and comparing the coefficients of 𝑇 𝑛, we have,

𝑝𝑛 = ∑
𝑑∣𝑛

𝑑𝑎𝑑 (∗)

Prime Number Theorem and Riemann Hypothesis 
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Definition 10.4.2

Now define the Möbius function on 𝑑 ∈ ℕ

𝜇(𝑑) =
{

1 if 𝑑 = 1

(−1)𝑟 if 𝑑 is a product of distinct 𝑟 primes
0 otherwise

Proposition 10.18 Möbius inversion formula

𝑓(𝑛) = ∑
𝑑∣𝑛

𝑔(𝑑) ⟺ 𝑔(𝑛) = ∑
𝑑∣𝑛

𝜇(𝑑)𝑓(𝑛
𝑑

)

By (∗) and the Möbius inversion formula, we have

𝑑𝑎𝑑 = 𝑝𝑑 + 𝑂(𝑝𝑑
2 )

i.e.

𝑎𝑑 = 𝑝𝑑

𝑑
+ 𝑂(𝑝𝑑

2

𝑑
)

Define 𝜋𝑝(𝑥) = #︎{ℓ | ℓ monic, irreducible, |ℓ| ≤ 𝑥} By the estimates of 𝑎𝑑,

𝜋𝑝(𝑥) = 𝑝
𝑝 − 1

⋅ 𝑥
log 𝑥

+ 𝑂(𝑥1
2+𝜀)

Which is RH in ℤ𝑝[𝑡]

Prime Number Theorem and Riemann Hypothesis 
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