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1 Groups

1.1 Notation
1. N={1,2,...}
2. Z={..,—1,0,1,..}
3.Q={%:a€ZbeN}
4. R = real numbers
5. C={a+bi:abeR*=-1}

Forn € N, Z,, = integers modulo n = {[0], ..., [n — 1]} where [r] = {2 € Z: Z = rmodn}
We note that the set S = N, Z,Q, R, C, Z,, has 2 operations +, -.
For n € N, an nxn matrix over R (or Q or C) is an nxn array

all e aln

A= [%‘] =

a a

nl - nn

with a;; € R.
Note we can also do +, -. For A, B € M, (R)

n

A+B:=[a;+b;] A B:= [ az‘kbka‘]

k=1

1.2 Groups

Let G be asetand *x : G Xx G — G. We say G is a group if the following are satisfied:
1. Associativity: if a,b,c € G,thena * (bxc) = (a*b) xc
2. Identity: thereise € G suchthataxe =exa=aforalla € G
3. Inverses: for all a € G, thereisa™! € Gsuchthataxa ! =a lxa=c¢

A group is called abelianifaxb=bxaforala,b € G

Prove in the definition of a group, 1-sided identity and inverses are enough to have 2-sided
identity and inverses
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Proposition 1.1 previous exercise

Suppose G is a set, * : G X G — @ is associative. Suppose there is e € G such that e * a = a for
all a € G. Further suppose that for every a € G, there is a~! € G such that a=! x a = e. Then
foralla € G,

l.axe=a

2. axa l=¢e

Proof of 1: Let a € G, then

alxaxe=exe=cec=alx*a
o 11
Multiplying on the left by ™!~ gives
-1 -1,
al " xaltxaxe=al *xalxa

— e*xaxe=exa
— a*xe=a

[
Proof of 2: Let a € G, then
alxa*xal=cxal=al
Again multiplying on the left by a= " gives
axal=e
[
Proposition 1.2
Let G be a group, let a € G. Then
1. The group identity is unique
2. The inverse of a is unique
Proof of 1: Suppose e, e, are both identities. Then
€] =€y xey = €
[
Proof of 2: Suppose by, b, are inverses of a. Then
by =byxe="b; x(axby) = (by xa) xby = e *x by, = by
[

(Z,4),(Q,+), (R,+), (C, +) are all abelian groups
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(z,-),(Q,-),(R,-),(C,-) are not groups as 0 has no inverse

but (Q \ {0},-), R\ {0},-), (C\ {0}, -) are abelian groups

For a set (9, ) let S* C S denote the set of all elements with inverses.
what is Z7 7

(M,,(R),+) is an abelian group.

n

Consider (Mn(]R), ) The identity matrix is [ :] However, since not all
Me M,

.. (R) have multiplicative inverses, (M, ( ) is not a group.

GL,(R) = {M € M, (R) : det(M) # 0}

Note

If A, B € GL,,(R), then det(AB) = det(A) det(B) # 0 Thus AB € GL,,(R). The associativity
of GL,, (R) inherits from M, (R). Also the identity matrix satisfies det(/) = 1 # 0 and thus

I € GL,,(R). Finally, for M € GL,,(R), there exists M~ € M, (R) such that

MM~ =1 = MM since det(M ') = det 5 7 0, we have M~ 1 € GL,,(R). Thus
(GL,,(R), -) is a group, called the general lmear group of degree n over R

Note
if n > 2, then GL,,(R) is not abelian.

What is (GL; (R), ) ?
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Let G, H be groups. The direct product is the set G x H with the component wise operation
defined by

(915 h1) * (92, ha) = (91 * 925 hy *p ho)
One can check that G x H is a group with identity (e, ej) and the inverse of (g, h) is
(g7 h7")
Note

One can show by induction that if G|, ..., G,, are groups, then G; X --- X G,, is also a group.

Given a group G and g,, g, € G, we often denote g; * g, by g, g, and its identity by 1. Also the
unique inverse of an element g € G is denoted by g~!. Also for n € N, we define
g" = g*g*-*g (ntimes)and g™ = (g~')". Finally, we denote g° = 1.

Proposition 1.3

Let G be a group and g, h € G we have
11

Lg =g

2. (gh)t =h"tg1

3. g"g™ = g"""™ foralln,m € Z
4. (g™)™ =g"™ foralln,m € Z

Proof of 1: Since

g lg=1=gg"
sogt =g O
Proof of 2:
(gh)(h™tg™") =g(hh™!)g! =glg~' =1
Similarly,

(htg71)(gh) =1

Thus (gh)™' = h g1 ]
Proof of 3: We proceed by considering cases:
1. if n = 0 then

gngm — gOgm — 1gm — gm — gO+m — gn+m
2. if n > 0, we will proceed by induction on n. Case 1 establishes the base case. Let m € Z, n € Z,,.
Suppose that g" g™ = g™ Then
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g"ttg™ = gg"g™ = gg

3. if n < 0, then n = —k for some k € N. We have

n+m _ . n+m+1
=g

gkgngm — gk+ngm — gOgm — gm
also
gkgn+m — gk-l—m—i-n — gm
Thus
gk:gngm — gkgn+m
So
gngm — gn+m
as desired.
0
Proof of 4: We proceed by considering cases:
1. if m =0, then (¢")™ = (¢")° =1 = ¢° = g"0 = g"™
2. if m > 0, then
(g")™ = g"g"g" =g"™
N ——
m times
3. if m < 0, then m = —Fk for some k € N. We will induct on k. For k = 1 we see that (¢") " = g~
since
gng—n — gn—n — go =1
Suppose (g")fe =g ™ foralll < ¢ < k Then
—k—1 —k ~1 —nk — —nk— -
(g") " =(g") (g =g g =g R = g
]

prove 3,4

Warning

In general, it is not the case that if g, A € G then (gh)™ = g™h", this is not true unless G is
abelian
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Proposition 1.4

Let G be a group and g, h, f € G Then
1. They satisfy the left and right cancellation. More precisely,
a. ifgh =gfthenh = f
b. if hg = fgthen h = f
2. Given a, b € G the equations axz = b and ya = b have unique solutions for z,y € G

1

Proof of 1-a: By left-multiplying by g™, we have

gh=gf <= glgh=glgf = h=Ff

0 O

Proof of 1-b: similar to 1-a
Proof of 2: Let x = a—'b then

ar =aa 'b=0>

If w is another solution, then au = b = ax. By 1-a, u = z. Similarly, y = ba~1 is the unique solution of

ya =b ]

1.3 Symmetric Groups

Given a non-empty set L, a permutation of L is a bijection from L to L. The set of all
permutations of L is denoted by S,

Consider the set L = {1, 2, 3} which has the following different permutations

(123) (123) (123) (123) (123) (123)
123/7\132/7\213/7\231/)°\ 312/ \ 321
Where (123) denotes the bijection

123
o:{1,2,3} — {1,2,3}

For n € N we denote by S,, = S¢; 5 ) the set of all permutations of {1,2, ..., n}. We have seen
that the order of S5 = 3! = 6. To consider the general S,,, we note that for a permutation
o € S, there are n choices for (1), n — 1 choices for 0(2)...., 1 choice for o(n) Thus

Proposition 1.5

|S,| = nl

Symmetric Groups 7
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Note

For Mobius quizzes, use “9 dots” for permutations.

Remark

Given o, T € S,, we can compose them to get a new element o7, where

or ={1,2,...,n} = {1,2,...,n} given by z > o(7(x)) Since both o, T are bijections, o7 € S,

Compute o7 and 70 if

_ (1234) _ (1234)
7= \3412)° 77 \2431
Then o7(1) = o(2) = 4. Then o7 = (514, and 7o = (153
We note that o7 # 70

Note

For any 0,7 € S,, we have that 70,07 € S, but 07 # 70 in general on the other hand, for any
o, T, u we have o(Tu) = (o7)p. Also note the identity permutation e € S,, is defined as

E =
19--.m
Thus for any o € S,,, we have e =0 =0

Finally, for o € S,,, since it is a bijection, there is a unique bijection 0! € S, called the inverse
permutation of o such that for all z,y € {1,2,...,n}

clz)=y<=oy) ==z
It follows that

and

i.e we have

Symmetric Groups 8
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B <12345)
7= \ 45123

. (12345)
o =
34512

Then

From the above we have

Proposition 1.6

(S,,,°) is a group, called the symmetric group of degree n

Write down all rotations and reflections that fix an equilateral triangle. Then check why it is the
“same” as S

Consider

, _ ((123456789(10)) _
— \317694258(10) 10

Wenotethat] -3 -7 —+2 —1and4 -6 —+4and5 — 9 — 8 and 10 — 10 Thus o can be
decomposed into one 4-cycle (1372), one 2-cycle (46), and one 3-cycle (598) and one 1-cycle (10)
(we usually do not write 1-cycles) Note that these cycles are pairwise disjoint and we have

o = (1372)(46)(598)

We can also write o = (46)(598)(1372), or 0 = (64)(985)(7213)

Theorem 1.7 Cycle Decomposition

If Given o € S,, with o # ¢, then o is a product of (one or more) disjoint cycles of length at least
2. This factorization is unique up to the order of the factors.

Proof: See bonus 1. ]

Every permutation of .S,, can be regarded as a permutation in .S, , ; by fixing the number n + 1,
thus

51C85C~C5,C5 1

Symmetric Groups 9
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1.4 Cayley Tables

For a finite group G, defining its operation by means of a table is sometimes convenient. Given
x,y € G, the product zy is the entry of the table in the row corresponding to = and the column
corresponding to y, such a table is a Cayley table.

Remark

By cancellation, the entries in each row or column of a Cayley table are all distinct

Consider (Z,, +) its Cayley table is

Zy | [0] | (1]
(0] | [0] | (1]
(1] ] [1] ] (0]

zrl1 |—1
1|11
—1(-1|1

Note

If we replace 1 by [0] and —1 by [1] the Cayley tables of Z* and Z., become the same. In this case,
we say Z* and Z, are isomorphic denoted by

Cayley Tables 10
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For n € N, the cyclic group of order n is defined by
C,={1,a,a? ...,a" '} with a" =1 and 1, q, ...,a™! are distinct

The Cayley table of C,, is as follows

C, 1 a |a? A
1 1 a CL2 n—2 n—1
a a a® |a® o= 1
a? a? a® |a* 1 a
an72 an72 anfl 1 anf4 an73
n—1 n—1 1 a |- an—3 an—2

Proposition 1.8

Let G be a group. Up to isomorphism, we have
1. If |G| =1, then G = {1}

2. If |G| = 2, then G = C,
3. If |G| = 3,then G = C4
4. If |G| =4,thenG = C,or G = K, = C, x C,
Proof of 1: obviously O

Proof of 2:If |G| = 2 then G = {1, g} with g # 1 Then g?> = g or g?> = 1. We note that if g*> = g, then
g = 1 contradiction.thus g? = 1. Thus the Cayley table is as follows

G|1
1(1|g
9|9l
which is the same as C, []

Proof of 3:1If |G| = 3, then G = {1, g,h} with g # 1, h # 1, g # h By cancellation, we have

gh # g, gh # h, thus gh = 1. Similarly, we have hg = 1. Also, on the row for g, we have g1 = g,

gh = 1. Since all entries in this row are distinct, we have g? = h. Similarly, we have h? = g. Thus we
obtain the following Cayley table

e [~]Q

=S e |
Q (=SS

SQ | ==

Which is the same as Cj.
Proof of 4: See assignment 1

0 O

Cayley Tables 11
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Consider the symmetry group of a non-square rectangle. How is it related to K,?

2 Subgroups
2.1 Subgroups

Let G be a group and H C G. IF H itself is a group, then we say H is a subgroup of G.

Note
We note that since G is a group, for hy, hy, hs € H C G, we have
hy(hohs) = (hihg)hy

Thus

Proposition 2.1 Subgroup Test

Let G be a group, H C G. Then H is a subgroup of G if
1. Ifhy,hy, € H,then h hy € H
2. 1y, € H
3. Ifhe€ H,thenh ' € H

Prove that 15 = 1,

Given a group G, then {1}, G are subgroups of G

We have a chain of groups

(Z,+) C (Q,+) € (R,+) C (C,+)

Subgroups 12
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Define
SL,,(R) = (SL,,(R), ) := {M € M, (R),det(M) =1} C GL,,(R)
Note that the identity matrix I € SL,,(R). Let A, B € SL,,(R), then
det(AB) =det(A)det(B)=1-1=1
and

1 1
:—:1

det(A™) = @) — 1

ie. AB, A7! € SL, (R). By the subgroup test (Proposition 2.1), SL, (R) is a subgroup of
GL,,(R). We call SL,, (R) the special linear group of order n over R

Given a group G, we define the center of G to be
Z(G):={2€ G| zg=gz Vg e G}

Remark

Z(G) = G iff G is abelian.

Proposition 2.2

Z (@) is an abelian subgroup of G.

Proof: Note that 1 € Z(QG). Let y, z € Z(G) Then for all g € G, we have
(y2)g = y(z9) = y(92) = (y9)z = (9y)z = 9(y2)
Thus yz € Z(G). Also, for z € Z(G), g € G we have

-1 -1

29 =gz < 2 (29)27 = 271 (g2)z
<~ gz:_1 = z_lg

Thus z~! € Z(G). By the subgroup test (Proposition 2.1), Z(G) is a subgroup of G. Also, by the
definition of Z(G), we see that it is abelian. O

Proposition 2.3

Let H, K be subgroups of a group G. Then H N G is also a subgroup.

Proof: Exercise ]

Subgroups 13
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Proposition 2.4 Finite Subgroup Test

If H # () is a finite subset of a group G, then H is a subgroup of G iff H is closed under its

operation.

Proof:

(=) obvious

(¢<=)For H # 0, let h € H. Since H is closed under its operation, we have h, h?, h3, ... € H. Since H is
finite, these elements are not all distinct. Thus A™ = A™*t™ for some n, m € N. By cancellation, h"™ = 1

and thus 1 € H. Also, 1 = h™ 1h implies that h~* = h™~! and thus h~! € H. By the subgroup test, H
is a subgroup of G. ]

2.2 Alternating Groups

A transposition o € S,, is a cycle of length 2. 1.e. 0 = (ab) witha,b € {1,2,...,n} and a # b.

Consider (1245) € S;. Also the composition (12)(24)(45) can be computed as

12345
12354
14352
24351

Thus we have (1245) = (12)(24)(45) Also we can show that
(1245) = (23)(12)(25)(13)(24)

We see from this example that the factorization into transpositions are NOT unique. However,
one can prove (see Bonus 2)

Theorem 2.5 Parity Theorem
If a permutation o has two factorizations

O =172 = H1M2 Mg

Where each +; and p; is a transposition, then 7 = s (mod 2)

A permutation o is even (or odd) if it can be written as a product of an even (or odd) number of
transpositions. By the previous theorem, a permutation is either even or odd, but not both.

Alternating Groups 14
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Theorem 2.6

For n > 2, let A,, denote the set of all even permutations in S,,
l.ecA,
2. fo, 7€ A,,thenor € A, ando ' € A
3. |A,| = in!

n

From (1) and (2), we see (A,,) is a subgroup of S,, called the alternating group of degree n.

Proof of 1: We can write € = (12)(12). Thus ¢ is even. O
Proof of 2:if o, 7 € A,, we can write 0 = 0,0, and T = 7y---7; where 0;, 7, are transpositions and
r, s are even integers. Then

OT = 00, Ty Tq

is a product of (r + s) transpositions and thus o7 € A,,. Also, we note that o, is a transposition, we

2

have 07 = ¢ and thus o; ! = o,. It follows that

o — (O-].“'O_’I’)_l — 0-;1"'0'1_1 =g -

r01

which is an even permutation. OJ
Proof of 3: Let O,, denote the set of odd permutations in S,,. Thus S,, = A,, U O,, and the parity
theorem implies that A, N O, = (. Since |S,,| = n!, to prove |4, | = inl, it suffices to show that

|A,| = 10,,|-Lety = (12) and let f : A,, — O,, be defined by f(o) = 0. Since o is even, we have yo
is odd. Thus the map is well-defined. Also, if we have yo; = 7y0,, then by cancellation, we get o, = 0,
thus f is injective. Finally, if 7 € O,,, then 0 = y7 € A,, and f(0) = yo = y(y7) = ¥27 = 7. Thus f is
surjective. It follows that f is a bijection, thus |A,,| = |O,|. It follows that |A, | = in! = |O,,| O

2.3 Orders of Elements

If G is a group and g € G, we denote

(g)={g"|kezZ}={ 079" =194}

Note that 1 = ¢g° € (g). Also, if z = g™,y = g™ € (g) With m,n € Z, then
Ty = g"g™ = g™ € (g) and 7! = g™ € (g). By the subgroup test, we have

Proposition 2.7

If G is a group and g € G, then (g) is a subgroup of G.

Let G be a group with g € G. We call (g) the cyclic subgroup of G generated by g.If G = (g) for
some g € G, then we say G is cyclic and g a generator of G.

Orders of Elements 15
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Consider (Z, +) Note that for all k¥ € Z, we can write k = k - 1. Thus we can see (Z,+) = (1).
Similarly, (Z,+) = (—1). We observe, for any integer n € Z with n # +1 there existno k € Z
such that k£ - n = 1. Thus 41 are the only generators of (Z, +).

Remark

Let G be a group and g € G. Suppose there is k € Z k # 0 such that g¥ = 1 then
g k= (gk)_1 = 1. Thus we can assume k£ > 1. Then by the well-ordering principle, there exists
the smallest positive integer n such that g" =1

Let G be a group and g € G. If n is the smallest positive integer such that g” = 1, then we say
the order of g is n, denoted o(g) = n. If no such n exists, we say g has infinite order and write

o(g) = o0

Proposition 2.8

Let G be a group and g € G with o(g) = n € N. For k € Z we have
1. g*=1iffn |k
2. g =gmiff k =m (modn)
3. (g) ={1,9, g2, ..., g”_l} where 1, g, ..., g" ! are all distinct. In particular, we have

[{g)| = o(g)

Proof of 1:
(<) if n | k, then k = nq for some g € Z. Thus

F=g"=(g")=1=1

(=) By the division algorithm, we can write k = nq + r with ¢, € Z and 0 < r < n. Since g* = 1
and g" = 1, we have

g =g =g"g")"'=1-177=1
Since 0 < r < n and o(g) = n, we have r = 0 and hence n | k. O
Proof of 2: Note that g¥ = g™ iff g*™ = 1. By (1), we have n | (km) i.e. k = m (modn) ]
Proof of 3: 1t follows from (2) that 1, g, ..., g" ' are all distinct. Clearly, we have {1, g,...,¢g" " *} C (g).

To prove the other inclusion, let g* € (g) for some k € Z. Write k = nq + r with n,r € Z and
0 <7 < n.Then

gF = gntT = gMign = (g")g" = 199" = g" € {1,9,...,9" '}

Thus (g) = {1,g, ...,g”_l} O

Orders of Elements 16
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Proposition 2.9

Let G be a group and g € G with o(g) = co. For k € Z we have
1. g*=1ifk=0
2. g =gmiffk=m
3. (¢9) ={., 9", ¢° =1,9,...} where g" are all distinct

Proposition 2.10

Let G be a group and g € G with o(g n € N.If d € N, then O(gd) = m. In particular, if

d | n, then ged(n, d) = d and o(g?) = a

Proof:Let ny = gy and dy = Wﬁz,d)‘ By a result from Math 135, we have ged(n,,d;) = 1. Note
that

(o)™ = (¢") = (g7 =1

Thus it remains to show that n; is the smallest such positive integer. Suppose (gd)r = 1withr € N.
Since o(g) = n, by proposition, we have n | dr. Thus there is ¢ € Z such that dr = ng. Dividing both
sides by ged(n, d) we get

B d - n
~ ged(n,d) ged(n,d)

dyr q="m4q

Since n, | dyr and ged(nq,d;) = 1, by a result from Math 135, we get n; | r i.e. r = n £ for some
¢ € Z. Since r;,n, € N, it follows that £ € N. Since ¢ > 1, we get r > n, O

2.4 Cyclic Groups
Remark

For a group G, if G = (g) for some g € G, then G is a cyclic group. For a,b € G, we have
a=g" b= g™ for some m,n € Z. We have

ab — gngm — gn+m — gm-‘rn — gmgn — ba

Proposition 2.11

Every cyclic group is abelian

Warning

The converse of the above proposition is not true. For example the Klein 4 group is abelian, but
not cyclic.

Proposition 2.12

Every subgroup of a cyclic group is cyclic.

Cyclic Groups 17



PMATH 347 FaLL 2025 JAKE EDMONSTONE

Proof: Let G = (g) be cyclic and H C G a subgroup. If H = {1}, then H is cyclic. Otherwise, there is
g* € H with k € Z \ {0}. Since H is a group, we have g~* € H. Thus we can assume that k¥ € N. Let
m be the smallest positive integer such that ¢"* € H.

Claim: H = (¢g™)

Proof is exercise, by division algorithm. ]

Proposition 2.13
Let G = (g) be a cyclic group with o(g) = n. Then G = (¢*) iff ged(k,n) = 1.

Proof: By proposition,

kY _ n _
o(¢") ged(n, k) "
[
Theorem 2.14 Fundamental Theorem of Finite Cyclic Groups

Let G = (g) be a cyclic group with o(g) =n € N.
1. If H is a subgroup of G, then G = (g?) for some d | n. It follows that |H| | |G]|.
2. Conversely, if k | n, then <g%> is the unique subgroup of G with order k.

Proof of 1: By proposition, H is cyclic. Write H = (g") for some m € NU {0}. Let d = ged(m, n).
Claim: H = (gd>
Since d | m we have m = dk for some k € Z. Then

g™ = g% = (49" € (g%

Thus H = (g™) C (g?). To prove the other inclusion, since d = ged(m, n), there is z,y € Z such that
d = mz + ny. Then

gt =gmetnY = (g™)"(g")" = (g™)"1¥ = (g™)" € (g™)
Thus (g%) C (¢™) = H. It follows that H = (g?). Note that since d = gcd(m, n), we have d | n. By
proposition, we have
n

_ (a0l — _nr
|H‘_°<g)_gcd(n,d) d

Thus |H| | |G| [
Proof of 2: By proposition, the cyclic subgroup < g%> is of order
n n

ged(n, %) B n/k

To show uniqueness, let K be a subgroup of G with order k | n. By 1, let K = (g%) where d | n. Then
by props, we have,

=k

n n

- ged(n,d)  d
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It follows that d = 7 and thus K = <g%> L]

2.5 Non-cyclic Groups

Let X be a non-empty subset of a group G, and let
<X> = {xlfl---xfnm ‘ :L'i E X, k’L E Z,m Z 1}

denote the set of all products of powers of (not necessarily distinct) elements of X. Note that this
is clearly a group. (X) is called the subgroup of G generated by X.

The Klein-4 group K, = {1,a,b,c} with a®> = b*> = ¢ = 1 and ab = c. Thus

K, ={(a,b|a?*=1=10b? and ab = ba)

3 2

The symmetric group of order 3 S5 = {¢,0,02,7,70,70?} where 0® = e = 7% and o7 = 70

(one can take 7 = (12) and o = (123)) Thus
(0,7 0% =¢=17% and o1 = 702?)

2

We can also replace o, 7 with o, 70 or o, 707, ..., etc

For n > 2 the dihedral group of order 2n is defined by
D,, ={1,q,.., a™ 1, b,ba, ..., ba”_l}
Where a" = 1 = b? and aba = b. Thus

D,,, = (a,b | a® =1 = b* and aba = b)

Note
For n = 2 or 3 we have

D,~K, and Dg;==S,

For n > 3, consider a regular n-gon and its group of symmetries. How does it relate to D,,,?
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3 Normal Subgroups

3.1 Homomorphisms and Isomorphisms

Let G, H be groups. A mapping o : G — H is a homomorphism if
alaxgb) = a(a) g a(b) Va,be G
To simplify notation, we often write

a(ab) = a(a)a(b) Va,beqG

Consider the determinant map
det : GL,,(R) — R*
Ar—detA

Since det AB = det A det B, the mapping det is a homomorphism.

Proposition 3.1

Let o : ¢ — H be a group homomorphism. Then
2.a(g)=alg™t Vgeai
3. a(¢®) =a(g)* VkeZ

Let o : G — H be a mapping between groups. If « is a homomorphism and « is bijective, we say
o is an isomorphism. In this case, we say G, H are isomorphic and write G = H.

Proposition 3.2

We have
1. The identity map id : G — G is an isomorphism.
2. If 0 : G — H is an isomorphism, then the inverse map o1 : h — G is also an
isomorphism.
3. Ifc: G — H and 7 : H — K is an isomorphism, the composite map 70 : G — K is also
an isomorphism.

So ¢ is (sort-of) an equivalence relation

Proof: Exercise. ]
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Let Rt = {r € R | r > 0}. Then (R, +) = (R*, -) since we see that

c:R—R"
T — e”

is a bijection. Moreover, o(z + y) = e*T¥ = €* - €¥ = o(z)o(y) thus o is an isomorphism.

Claim: (Q, +) % (Q*,-) Suppose 7 : (Q,+) — (Q¥, -) is an isomorphism. Thus 7 is surjective. So
there is some ¢ € Q such that 7(q) = 2. Then

(3) =)

Thus 7‘(%) is a rational number whose square is 2, a contradiction.

- (§+9) -0

3.2 Cosets and Lagrange’s Theorem

Let H be a subgroup of a group G. If a € G, we define
Ha = {ha |h € H}

to be the right coset of H generated by a. We define the left coset similarly.

Remark

Since 1 € H, wehave H1 = H = 1H. Also a € Ha and a € aH. Note that in general Ha and
aH are not subgroups of G, and aH # Ha. However, if G is abelian, then Ha = aH.

Let K, = {1,a,b,ab}. Let H = {1, a} which is a subgroup of K;. Note that since K is abelian,
we have gH = Hg for all g € K. Then the (right or left) cosets of H are

Hl={l,a}=1H
and
Hb = {b,ab} = Hab

Thus there are exactly two cosets of H in K,
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Let S5 = {e,0,0% 7,70,70%} witho® = e =12 and 070 = 7. Let H = {, 7} whichisa

—1

subgroup of S;. Since 07 = 70! = 702, the right cosets of H are

He ={e, 1} =Hrt
Ho ={o,70} =Hrto
Ho? = {02,702} = Hro?
And the left cosets of H are
eH ={e,7} =71H
cH = {0, 7'02} =70’H
o’H = {02,70} =710H

Notice that Ho # oH and Ho? # 0*H

Proposition 3.3

Let H be a subgroup of a group G and let a,b € G.
1. Ha = Hbif and only if ab~! € H. In particular, we have Ha = H if and only ifa € H.
2. Ifa € Hb, then Ha = Hb
3. Either Ha = Hb or Ha N Hb = (). Thus, the distinct right cosets of H forms a partition of
G.

Proof of 1:
(=)If Ha = Hb, then a = 1a € Ha = Hb. Thus a = hb for some h € H and we have ab~! = h € H.
(¢<=) Suppose ab~! € H forallh € H. Then forall h € H,

ha = hab™'b = h(ab™)b € Hb
Thus Ha C Hb. Note that if ab~! € H, since H is a subgroup, then
(ab_l)f1 =baleH
Thus forall h € H,
hb = h(ba™')a € Ha

Thus Hb C Ha. It follows that Ha = Hb. ]
Proof of 2:1f a € Hb, then ab~! € H. Thus, by (1), we have Ha = Hb. O]
Proof of 3: Two cases:

1. If Ha N Hb = (), then we are done.

2. If Ha N Hb # (), then there exists z € Ha N Hb. Since z € Hb, by (2), we have Hb = Hz. Thus

Ha=Hzxz = Hb
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Remark

The analogues of the previous proposition also holds for left cosets
1. aH = bH ifand only if b~ta € H

Let G be a group and H a subset of G. For a,b € G, do we still have Ha = Hb, or Ha N Hb = ()
if H is not a subgroup of G.

By the previous proposition, we see that G can be written as a disjoint union of right cosets of
H. We define the index [G : H] to be the number of disjoint right (or left) cosets of H in G. (Note
that [G : H] could be infinite).

Theorem 3.4 Lagrange’s Theorem
Let H be a subgroup of a finite group G. We have |H| | |G| and

- 16l
G H] =

Proof: Write k = [G : H] and let Ha,, ..., Ha,, be the distinct right cosets of H in G. By prop
G =Ha,U--UHa,
is a disjoint union. Since |Ha,;| = |H| for each i, we have
G| = [Hay| + -+ [Hay| = k[H|

It follows that |H| | |G| and [G : H] = k = {5, O

Corollary 3.5

1. If G is a finite group and g € G then o(g) | |G]|
2. If G is a finite group with |G| = n, then for all g € G, we have g" = 1

Proof of 1: Take H = (g) in the theorem. Note that |H| = o(g) O
Proof of 2: Let o(g) = m then by (1), we have m | n. Thus

gt = (g =17 =1
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For n € Nwithn > 2, let Z}, be the set of (multiplicative) invertible elements in Z,,. Let the
Euler’s o-function p(n), denote the order of Z7 . i.e.

o(n)=|{[k] €Z, | ke€{0,1,..,n—1} and gcd(k,n) = 1}|

As a direct consequence of the corollary, we see that if a € Z with ged(a,n) = 1, then
a¥™ =1 (mod n). This is Euler’s Theorem. If n = p, a prime number, then Euler’s Theorem
implies that a?~! = 1 (mod p), which is Fermat’s little theorem.

Recall
If |G| = 2 then G = C,, and |G| = 3 then G = Ci;.

Corollary 3.6

If G is a group with |G| = p a prime, then G == C,,, the cyclic group of order p.

Proof: Let g € G with g # 1. Then by corollary, we have o(g) | p. Since g # 1 and p is a prime, we have
o(g) = p. By proposition, we have

It follows that G = (g) =~ C, [

p

Corollary 3.7
Let H and K be finite subgroups of a group G. If gcd(|H|, |K|) = 1, then H N K = {1}.

Proof: Note H N K is a subgroup of H and K. So by Lagrange’s Theorem, we have |H N K| | |H| and
|HN K| | |K| It follows that |H N K| | ged(|H|, |K]|),ie. |[HN K| =1Thus HN K = {1}. O

3.3 Normal Subgroups

Let H be a subgroup of a group G.If gH = Hg for all g € G, we say H is normal, denoted by
H <G

We have {1} < G and G < G.

The center Z(G) of G is an abelian subgroup of G. By its definition, Z(G) <1 G. Thus every
subgroup of Z(G) is normal in G.
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If G is an abelian group, then every subgroup of GG is normal in G. Note the converse is false (see
assignment 3)

Proposition 3.8 Normality Test

Let H be a subgroup of a group G. The following are equivalent:
1. H< G
2. gHg ' C Hforallg € G.We call gHg ! a conjugate of H
3. gHg! = H for all g € G. (Thus H <1 G if and only if H is the only conjugate of H)

Proof of (1) = (2):Let ghg™! € gHg ™! for some h € H. Then by (1), gh € gH = Hg, say gh = h,g
for some h,; € H. Then ghg™! = hygg~* = h, € H. OJ
Proof of (2) = (3):If g € G, then by (2), gHg~! C H. Taking g~ in place of g in (2), we get

g 1Hg C H. Thus implies that H C gHg ! Thus H = gHg . O
Proof of (3) = (1):1f gHg™! = H, then gH = Hyg. O

Let G = GL,(R) and H = SL,,(R). For A € G and B € H, we have

det(ABA™') =det Adet Bdet A™! =det B=1
Thus ABA™! € H and it follows that AHA™! C H for all A € G, so by the normality test,
SL,,(R) < GL,,(R).

Proposition 3.9

If H is a subgroup of a group G with [G : H| = 2, then H < G.

Proof:Letg € G,1fg€ H,then Hg=H = gH.If g ¢ H,since [G: H] = 2,thenG = H U Hg, a
disjoint union. Then Hg = G'\ H. Similarly, g = G\ H. Thus gH = Hgforallg € Gie. H < G. []

Let A,, be the alternating group contained in S,,. Since [S,, : A,,] = 2. By proposition, we have
A, <8,

Let Dy, = (a,b | a" = 1 = b* and aba = b) be the dihedral group of order 2n. Since
[D,,, : {(a)] = 2, by proposition, (a) < D,,,

Let H and K be subgroups of a group G. Then the intersection H N K is the largest subgroup of G that
contained in both H and K.
Question: What is the smallest subgroup containing H and K? Note that H U K is the smallest subset
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containing H and K, but H U K is a subgroup if and only if H C K or H O K. A more useful subset
to consider is the product HK of H and K defined as follows

HK ={hk |h € H,k € K}

Remark

The product of 2 subgroups is not always a subgroup.

Let H and K be subgroups of a group G, then the following are equivalent:
1. HK is a subgroup of G
2. HK = KH
3. KH is a subgroup of G.

Proof of (1 <= 2): Note that (2 <= 3) will follow after exchanging H and K. Suppose (2) holds, we
have 1l =1-1¢€ HK. Also if hk € HK, then (hk)™! = k'h~! € KH = HK. Also for
hk,hy,k, € HK, we have kh, € KH = HK, say kh, = hyk,, it follows that

(hk)(hlkl) = h(khl)kl = h(hzkz)kl = (hh2)(k2k1) €HK

By the subgroup test, H K is a subgroup of GG. Suppose conversely that (1) holds. Let kh € K H with
k€ K,h € H.Since H and K are subgroups of G, we have h™! € H,and k! € K. Since HK is a

subgroup of GG, we have
kh= (b 'k 1) € HK
Thus KH C HK, similarly, one can show HK C KH.Thus HK = KH. ]

Proposition 3.11

Let H and K be subgroups of a group G. Then
1. If H < Gor K <G, then HK = KH is a subgroup of G
2.If H<Gand K <G, then KH 1 G

Proof of 1: Suppose H <1 G then

HK = U Hk = U kH = KH
keK keK

By lemma, HK = K H is a subgroup of G. ]
Proof of 2:1f g € G and hk € HK, since H < G and K <1 G we have

g '(hk)g = (g hg)(9 ' kg) € HK

Thus g 'HKg C HK and HK < G. OJ
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Let H be a subgroup of a group G. The normalizer of H, denoted by N (H) is defined to be
Ng(H) ={g9 € G| gH = Hg}

We see that H < Gifand only if No(H) = G

Note

In the proof of the previous proposition, we do not need the full assumption that H <1 G. We
only need kH = Hk forallk € K, ie k € Ng(H) Thus

Corollary 3.12

Let H and K be subgroups of a group G. If K C N (H) (or H C N (K))then HK = KH isa
subgroup of G.

Theorem 3.13

If H<1Gand K < Gsatisfty HNK = {1},then HK =~ H x K.

Proof:

Claim:If H < G and K <1 G satisfy H N K = {1} then hk = khforallh € H and k € K.

Consider x = hk(kh)™' = hkh~'k~1. Note that kh~'k~! € kHk™' = H (since H < G). Thus z € H.
Similarly, since hkh™ € hKh™! = K, we have x € K. Since x € H N K = {1}, we have

hkh='k=! = 1ie. hk = kh.

Since H <1 G, by proposition, H K is a subgroup of G. Define 0 : H x K — HK by o(h, k) = hk.
Claim: o is an isomorphism.

Let (h,k), (hy, k) € H x K By claim 1, we have h, k = kh,. Thus
o((h, k) - (hy, k1)) = o(hhy, kky) = hhykky = hkhiky = o(h, k) - o(hy, k)

Thus o is a homomorphism. Note that by the definition of H K, ¢ is surjective. Also, if
o(h,k) = o(hy, k), we have hk = h,k;. Thus hy'h = k;k~! € HN K = {1} Thus
hi'h =1=k;k 'ie hy = hand k; = k. Thus o is injective. So o is an isomorphism and we have

HK =~ Hx K. 0

Corollary 3.14

Let G be a finite group, and let H and K be normal subgroups such that H N K = {1} and
|H||K| =|G|. ThenG = H x K.

Proof:
|HI| K]
HK|='"—"—""_=|H||K|=|G
HE| = (g = HIK = (€]
Thus HK = G, and so a direct application of the theorem gives G = HK =~ H x K. ]
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Let m,n € N with gcd(m,n) = 1. Let G be a cyclic group of order mn. Write G = (a) with
o(a) = mn.Let H = (a") and K = (a™). Thus |[H| = 0(a™) = m and |K| = o(a™) = n. It
follows that |H|| K| = mn = |G]|. Since gcd(m,n) = 1, by corollary, we have H N K = {1}.
Also, since G is cyclic and thus abelian, we have H <1 G and K <1 G. Then by corollary, we have
G=~HxK,ie.C,, ~C, xC, . Hence, to consider finite cyclic groups, it suffices to consider
cyclic groups of prime power order.

4 Isomorphism Theorems

4.1 Quotient Groups
Remark

Let K be a subgroup of G. Consider the set of right cosets of K, i.e. {Ka | a € G}. To make it a
group, a natural way is to define

Ka-Kb= Kab Va,beG (%)

Note that we could have Ka = Ka; and Kb = Kb, with a # a; and b # b;, Thus in order for
(*) to make sense, a necessary condition is

Ka = Ka, and Kb = Kb; = Kab = Ka b,

In this case, we say that the multiplication is well-defined.

Let K be a subgroup of a group G, the following are equivalent:
L. K1G
2. For a,b € G, the multiplication Ka - Kb = Kab is well-defined.

Proof of (1 = 2):Let Ka = Ka, and Kb = Kb,. Thus aa;! € K and bb;! € K. To get
Kab = Ka,b,, we need ab(a;b,)”" € K. Note that since K < G, we have aKa™! = K. Thus

ab(a;by) " = abbytay" = (abby'a™")(aa; ") € K

ThuS Kab:Kalbl. I:\
Proof of (2 = 1):Ifa € G, to show K <1 G, we need aka™! € K forall k € K. Since Ka = Ka and
Kk = K1, by (2), we have Kak = Kal ie. Kak = Ka. It follows that aka™! € K. Thus K < G. OJ

Proposition 4.2

Let K < G and write G/K = {Ka | a € G} for the set of all cosets of K. Then
1. G/K is a group under the operation Ka * Kb = Kab.
2. The mapping ¢ : G — G/ K given by ¢(a) = Ka is a surjective homomorphism.
3. If [G : K] is finite, then |G/K| = [G : K]. In particular, if |G| is finite, then |G/ K| = %
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Proof of 1: By other proposition, the operation is well defined and G/ K is closed under operation. The
identity of G/K is K - 1 = K. Also, the inverse of Ka is Ka™!. Finally, by the associativity of G, we
have

Ka(KbKc) = (KaKb)Kec.

It follows that G/ K is a group. O
Proof of 2: ¢ is clearly surjective. Also, for a,b € G, we have

w(a)p(b) = KaKb = Kab = ¢(ab)

so ¢ is a homomorphism. ]
Proof of 3:If [G : K] is finite, by the definition of index, |G/ K| = [G : K]. Also, if |G| is finite, by
Lagrange’s Theorem, |G/K| =[G : K| = % 0

Let K < G. The group G/ K of all cosets of K in G is called the quotient group of G by K. Also,
the mapping ¢ : G — G/ K given by p(a) = Ka is called the coset map.

List all normal subgroups of D, and all quotient groups of D,,/K.

4.2 Isomorphism Theorems

Let o : G — H be a group homomorphism. The kernel of a is defined by
kera={geG|alg) =1y} CG
and the image of a is defined by
ima =a(G)={alg) |ge G} C H

Proposition 4.3

Let o : G — H be a group homomorphism
1. im « is a subgroup of H
2. ker ar is a normal subgroup of G

Proof of 1: Note that 1 ;; = a(14) € im a. Also, for h; = a(gy), hy = a(gy) € im a, we have
hihy = a(gy)a(gy) = a(g19;) € ima

Also, by proposition, a(g)™ = a(g~!) € im a. By the subgroup test, im « is a subgroup of H. ]
Proof of 2: For ker a, note that (1) = 1. Also, for k,, k, € ker a, then

a(kiky) = alky)a(ky) =1-1=1
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and
aki) =a(k)  =11=1
By the subgroup test, ker « is a subgroup of GG. Note that if g € H and k € ker o, then
a(ghg™) = a(g)a(k)a(g) = alg)la(g) ' =1

Thus g(ker a)g~! C ker a. By the normality test, ker o <1 G. O

Consider the determinant map det : GL,,(R) — R* defined by A — det A. Then
ker(det) = SL,,(R). Thus, we get another proof that SL,, (R) < GL,, (R).

Define the sign of a permutation o € S,, by

i) = 1 if o is even
& | —1if o is odd

Note that sgn : S,, — (41, -) defined by o > sgn(o) is a homomorphism. Also, ker(sgn) = A
Thus we have another proof that 4, < .S,,.

n

Theorem 4.4 First Isomorphism Theorem

Let o : G — H be a group homomorphism. Then

G/ ker a = im «

Proof: Let K = ker o Since K <1 G, G/ K is a group. Define the map
a:G/K — ima
Kg+— a(g)

Note that
Kg=Kg, < ggi" € K < a(ggi') =1 < a(g) = a(g))
Thus, @ is well-defined and injective. Also @ is clearly surjective. For g, h € G, we have
a(KgKh) =a(Kgh) = a(gh) = a(g)a(h) = a(Kg)a(Kh)

Thus @ is a group isomorphism and we have G/ ker & = im «. ]
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Remark

Let a : G — H be a group homomorphism and K = ker a.. Let ¢ : G — G/ K be the coset map
and let @ be defined as in the previous proof. We have the following diagram:

(0%

G/K
Note that for g € G, we have
ap(g) =a(e(g) =a(Kg) = alg)

Thus o = @ on the other hand, if we have a = @, then the action of @ is determined by o and
@ as

a(Kg) =a(p(g)) = ap(g) = alg)

Thus @ is the only homomorphism G/K — H satistying ap = a.

Proposition 4.5

Let o : G — H be group homomorphism and K = ker .. Then « factors uniquely as a = ayp
where ¢ : ¢ — G/K is the coset map and @ : G/K — H is defined by a(Kg) = a(g). Note that
 is surjective and @ is injective.

We have seen that (Z, +) = (+1) and for n € N, (Z,,, +) = ([1]) are cyclic groups. In the
following, we will show that these are the only cyclic groups.
Let G = (g) be a cyclic group. Consider a : (Z, +) — G defined by a(k) = g* for all k € Z,
which is a group homomorphism. By the definition of (g), « is surjective. Note that
kera ={ke€Z ‘ g* = 1}, we have two cases:

1. If o(g) = oo, then ker a = {0}. By the first isomorphism theorem, we have

G=7Z/{0} =Z
2. If o(g) = n, by proposition, ker &« = nZ. By the fist isomorphism theorem,

GxZ/nZ =17,

By (1) and (2), we can conclude that if G is cyclic, then G =2 Z or G = Z,,.
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Theorem 4.6 Second Isomorphism Theorem

Let H and K be subgroups of a group G with K <1 G. Then HK is a subgroup of G, K < HK,
HNK<Hand HK/K ~H/HNK.

Proof: Since K < G, by proposition, HK is a subgroup, HK = KH and K <1 HK. Consider
a: H— HK/K defined by a(h) = Kh. (note that h € H C HK). Then « is a homomorphism
(exercise). Also, if x € HK = KH, say ¢ = kh, then

Kz = K(kh) = Kh = a(h)
Thus « is surjective. Finally, by proposition,
kera={he H|Kh=K}={heH|he K} =HNK
By the first isomorphism theorem,

H/HNK ~ HK/K

O
Theorem 4.7 Third Isomorphism Theorem
Let K C H C G be groups with K <G and H < G. Then H/K < G/K and
(G/K)/(H/K) = G/H
Proof: Define o : G/K — G/H by a(Kg) = Hg for all g € G. Note that if Kg = Kg,, then
gg;* € K C H. Thus Hg = Hg, and « is well defined. Clearly, « is surjective. Note that
kera ={Kg|Hg=H}={Kg|g€e H} = H/K
By the first isomorphism theorem,
(G/K)/(H/K) = G/H
[
5 Group Actions
5.1 Cayley’s Theorem
Theorem 5.1 Cayley’s Theorem

If G is a finite group of order n, then G is isomorphic to a subgroup of S,,.

Proof:Let G = (gy, ..., g,,) and let S be the permutation group of G. By identifying g, with i, we see
that S; = S,,. Thus it suffices to find a injective homomorphism o : G — S. For a € G, define

e : G = G by u,(g) = ag for all g € G. Note that ag = ag, implies g = g; and a(a'g) = g. Hence
L, is a bijection and p, € Sg. Define 0 : G — S by o(a) = p,. For a,b € G, we have p, 4, = fqp
and o is a homomorphism. Also, if 1, = y;, then a = p, (1) = p (1) = b. Thus, by the first
isomorphism theorem, we have G = im o, a subgroup of S; = §,,. ]
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Let H be a subgroup of a group G with [G : H| = m < co.Let X = {¢9,H, g9,H, ..., g,, H } be
the set of all distinct left cosets of H in G. For a € G, define A\, : X — X by A\, (gH) = agH for
all gH € X. Note that agH = ag, H implies that gH = g, H and a(a 'gH) = gH. Hence ), is
a bijection and thus A, € Sy. Consider 7 : G — Sy defined by 7(a) = A,. For a,b € G, we have
Aap = A, and thus 7 is a homomorphism. Note that if a € ker 7, then )\, is the identity
permutation. In particular, aH = A\, (H) = H. In particular, a € H. Thus ker 7 C H.

Theorem 5.2 Extended Cayley’s Theorem

Let H be a subgroup of a group G with [G : H] = m < co. If G has no normal subgroup
contained in H except for {1}, then G is isomorphic to a subgroup of S, ,,.

Proof: Let X be the set of all distinct left cosets of H in G. We have |X| = m and Sy = S,,,. We have
seen from the above example that there exist a group homomorphism 7 : G — Sy with

K = ker T C H. By the first isomorphism theorem, we have G/K = im 7. Since K C H and K < G,
by the assumption, we have K = {1}. It follows that G = im 7, a subgroup of Sy = S, . O

Corollary 5.3

Let G be a finite group and p the smallest prime dividing |G|. If H is a subgroup of G with
[G: H] =pthen H < G.

Proof: Let X be the set of all distinct left cosets of H in G. We have |X| =pand Sy = S, Let
7:G — Sx =5, be the group homomorphism defined in the above example with K := ker 7 C H. By

the first isomorphism theorem, we have G/K = im 7 C S,,. Thus G/ K is isomorphic to a subgroup of
S,. By Lagrange’s Theorem, we have |G /K| | p!. Also, since K C H, if [H : K| = k, then

16l _ 16l 1H] _

G/K| = = —
C/EI =1k = =R

Thus pk | p! and hence k | (p — 1)!. Since k | |H
dividing |G|, we see every prime divisor of k£ must be > p unless k = 1. Combining this with
k| (p— 1)\, this forces k = 1, which implies K = H, thus H < G. O

, which divides |G| and p is the smallest prime

5.2 Group Actions

Let G be a group and X a non-empty set. A (left) group action of G on X is a mapping
G x X — X denoted (a,z)  a - x such that

l.1-x=zforallz € X

2.a-(b-x)=(ab) -z foralla,b e Gandz € X

In this case, we say G acts on X.
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Remark

Let G be a group acting on a set X # (). For a,b € G and z,y € X, by (1) and (2), we have

a-z=b-y< (bla) - z=y

In particular, we have a - * = a - y if and only if x = y.

If G is group, let G act on itself by conjugation. i.e. X = G,by a -z = aza™! foralla,z € G.
Note that

l-z=1z1"'=¢
and
a-(b-z)=a(bzb')a! = (ab)z(ab)~! = (ab) -

So it is indeed a group action.

Remark

Fora € G, defineo, : X - X by o,(xz) = a-z forall z € X. Then one can show
1. 0, € S, the permutation group of X
2. The function 6 : G — Sy give 0(a) = o0, is a group homomorphism with
ker ={a € G|ax =2 Vx € X}

Note that the group homomorphism 6 : G — S gives an equivalent definition of group action
of Gon X.If X = G with |G| = n and ker § = {1}, the map 6 : G — S,, shows that G is
isomorphic to a subgroup of §,,, which is Cayley’s Theorem. Thus, the notion of group action
can be viewed as a generalization of the proof of Cayley’s Theorem.

Let G be a group acting on X # (. Let z € X. We call
1. G-z ={g-z| g€ G} C X Theorbit of x
2. S(x) ={9€ G|g-z=ua} CG The stabilizer of x

Proposition 5.4

Let G be a group acting on a set X # () and let x € X. Then
1. S(x) is a subgroup of G.
2. There exists a bijection from G - z to {gS(z) | g € G} and thus |G - z| = [G : S(z)]

Proof of 1: Since 1 - © = x, we have 1 € S(z). Also, if g, h € S(z), then
gh-(z)=g-(h-z)=g-z=1

and
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g_l.m:g_l.(g.m):(g_lg).le.x:gj

Thus gh, g~! € S(z). By the subgroup test, S(z) is a subgroup of G. O
Proof of 2: Consider the map ¢ : G- — {gS(z) | g € G} defined by (g - ) = gS(z). Note that

g z=h-z< (hlg) 2=z hlge S(z) < hS(z) = gS(x)
Thus ¢ is well-defined and injective. Since ¢ is clearly surjective, ¢ is a bijection. It follows that
|G -z[ = [{gS(z) | g € G} =[G : S(2)]
0
Theorem 5.5 Orbit Decomposition Theorem
Let G be a group acting on a finite set X # (. Let
X;={ze€eX|a-z=2VYaeG}
(Note that x € X iff |G- x| = 1) Let G - 71, G - 2, ..., G - z,, denote the distinct non-singleton

orbits (i.e. |G - z;| > 1) Then

] = %]+ G : S(ay)

=1

Proof: Note that for a,b € G and z,y € X,
a-rz=b-ye= (bla) z=ye=yeG =G y=G-x

Thus two orbits are either disjoint, or the same. It follows that the orbits form a disjoint union of X.
Sincex € X f iff |G- x| =1, theset X \ X ¥ contains all non-singleton orbits, which are disjoint. Thus
by proposition 5.4, we have

X| = |X; ]+ IG -z,
i=1

= 1%, + Y16 5(@)

1=
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Let G be a group acting on itself by conjugation i.e. g - & = gzg~!. Then
Gi={reG|lgzg ' =xVgeG}
={z€G|gx=2x9VgeGqG}
= 2(G)
Also, for z € G,
S(@)={9€G|gug' =2} ={g€G | gz =zg}

This set is called the centralizer of z and is denoted by S(x) = Cg(z). Finally in this case, the
orbit

G-z ={gzg* |g€G}
is called the conjugacy class of x.

By Theorem 5.5,

Corollary 5.6 Class Equation

Let G be a finite group and let {g:clg_l | g€ G}, ..., {gz,97" ’ g € G} denote the distinct non-
singleton conjugacy classes, then

n

Gl =1Z(G)| + ) _IG : Ca(z,)]

i=1

Let p be a prime and m € N. Let G be a group of order p™ acting on a finite set X # ). Let X,
be defined as in Theorem 5.5. Then we have

|1 X| = ‘Xf‘ (mod p)
Proof: By Theorem 5.5, we have

1 X| = |X;| + zn:[G : S(z;)] with [g: S(z;)] > 1

i=1
Since [G : S(z;)] divides |G| = p™ and [G : S(z;)] > 1. We have p | [G : S(z;)] for all i. It follows that
1 X| = |Xf| (mod p)
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Theorem 5.8 Cauchy’s Theorem

Let p be a prime and G a finite group. If p | |G/, then G contains an element of order p.

Proof: Define X = {(al, ...,ap) | a; € G and a;--a, = 1}. Since a,,
ay, ..., a, 1,if |G| = n, we have | X| = nP~!. Since p | n, we have | X| = 0 (mod p). Let the group
L, = (Zp, +) acts on X by “cycling”, i.e. for k € Z,,

is uniquely determined by

k - (al,...,ap) = (akH, ...,ap,al,...,ak)

One can verify that this action is well defined. Let X ; be defined as in theorem 5.5. Then
(al, ...,ap) € X;iffa; = ay = = a,. Clearly (1,1,..,1) € X and hence ‘Xf‘ > 1. Since ‘Zp‘ =D,
by lemma 5.7, we have

| X;|=|X|=0 (modp)

Since ’Xf| =0 (mod p) and |Xf| > 1. It follows that |Xf| > p. Therefore, there exists a # 1 st
(a,..,a) € X ¢ which implies that a” = 1. Since p is prime and a =+ 1, the order of a is p. O

6 Sylow Theorems
6.1 p-groups

Let p be a prime. A group in which every element has order of a non-negative power of p is
called a p-group

Remark

As a direct consequence of Cauchy’s Theorem we have

Corollary 6.1

A finite group G is a p-group if and only if |G| is a power of p

The center Z(G) of a non-trivial finite p-group G contains more than one element.

Proof: The class equation of G' (Cor 5.6) states that

m

Gl =12(G)| + ) G : Cg(x))]

=1

where [G : Cg(z;)] > 1. Since G is a p-group, by Cor 6.1, p | |G|. By lemma 5.7,
|Z(G)| = |G| =0 (mod p). It follows that p | |Z(G)|. Since 1 € Z(G) and |Z(G)| > 1, Z(G) has at
least p elements. O
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Recall

If H is a subgroup of a group G, then N (H) = {g € G ‘ gHg ' = H} is the normalizer of H
in G. In particular, H <l N (H).

If H is a p-subgroup of a finite group G, then
[Ne(H) : H =[G : H] (modp)

Proof: Let X be the set of all left cosets of H in G. Hence | X| = [G : H]. Let H act on X by left
multiplication. Then for z € G, we have

xHEXf@hmHszVhEH

<~ r hxtH=HVhe H
<~z 'Hx=H
<z € Ny(H)

Thus | X | is the number of cosets £ H with € N (H) and hence |X;| = [Ng(H) : H]. By lemma
5.7,

[Ng(H): Hl = |X;| = |X|=[G: H] (modp)

OJ

Corollary 6.4

Let H be a p-subgroup of a finite group G. If p | [G : H| thenp | [Ng(H) : H| and N, (H) # H.
Proof: Since p | [G : H|, by lemma 6.3, we have

No(H): H]=[G: H] =0 (modp)

Since p | [No(H) : H] and [N (H) : H] > 1, we have [No(H) : H] > p. Thus N, (H) + H. O
6.2 Three Sylow Theorems

Recall

Cauchy’s theorem states that if p | |G|, then G contains an element of order p. Thus |{(a)| = p.

The following first Sylow Theorem can be viewed as a generalization of Cauchy’s Theorem.

Theorem 6.5 First Sylow Theorem

Let G be a group of order p”m where p is a prime, n > 1 and ged(p, m) = 1. Then G contains a

subgroup of order pt for all 1 < 5 < n. Moreover, every subgroup of G of order P (1 <n)is
i+1

normal in some subgroup of order p
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Proof: We prove this theorem by induction on 4. For i = 1, since p | |G

, by Cauchy’s theorem, G
contains an element a of order p, i.e. |(a)| = p. Suppose that the statement holds for some 1 < i < n.
Say H is a subgroup of G of order p*. Then p | [G : H], by Cor 6.4, p | [Ng(H) : H] and

[No(H) : H| > p,p | [G: H]. Then by Cauchy’s theorem, N (H)/H contains a subgroup of order p.
Such a group is of the form H, /H, where H; is a subgroup of N (H) containing H. Since

H < N;(H), we have H < H;. Finally, |H, | = |H||H,/H| = p* - p = p*™L. O

A subgroup P of a group G is said to be a Sylow p-subgroup of G if P is a maximal p-group of G
ie.if P C H C G with H a p-group, then P = H.

As a direct consequence of theorem 6.5,

Corollary 6.6

Let G be a group of order p"m where p is a prime, n > 1 and ged(p, m) = 1. Let H be a p-
subgroup of G.

1. H is a Sylow p-subgroup iff |H| = p”

2. Every conjugate of a Sylow p-subgroup is a Sylow p-subgroup.

3. If there is only one Sylow p-subgroup P, then P < G.

Theorem 6.7 Second Sylow Theorem

If H is a p-subgroup of a finite group G, and P is any Sylow p-subgroup of G, then there exists

g € G such that H C gPg . In particular, any two Sylow p-subgroups are conjugate.

Proof: Let X be the set of all left cosets of P in GG, and let H act on X by left multiplication. By lemma
5.7, we have | X ;| = |X| = [G : P] (modp). Since p } [G : P], we have | X;| # 0. Thus there exists
gP € X for some g € G. Note that

gP € Xy < hgP =gP VheH
<~ g'thgP=P VYheH
<~ g'HgCP
< H C gPg™!

If H is Sylow p-subgroup, then |H| = |P| = |gHg ™|, thus H = gPg ™. O

Theorem 6.8 Third Sylow Theorem

If G is a finite group and p a prime with p | |G|, then the number of Sylow p-subgroups of G
divides |G| and is of the form kp + 1 for some k € N U {0}.

Proof: By theorem 6.7, the number of Sylow p-subgroups of G is the number of conjugates of any of
them, say P. This number is [G : N5 (P)]. Which is a divisor of |G|. Let X be the set of all Sylow p-
subgroups of G and let P act on X by conjugation. Then ) € X iff gQg ! = Qforall g € P. The
latter condition holds iff P C N (Q). Both P and @ are Sylow p-subgroups of G and hence N (Q).
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Thus by Cor 6.6, they are conjugate in N (Q). Since @ <I N (Q), this can only occur if Q = P and
X; = {P}.Bylemma 5.7, | X| = | X;| = 1(mod p). Thus | X| = kp + 1 for some k € NU {0}.
Remark

Suppose that G is a group with |G| = p"m and ged(p, m) = 1. Let n,, be the number of p-
subgroups of G. By the third Sylow theorem, we have n,, | p"m and n,, = 1(mod p). Since

p t n,, we have n,, | m.

Claim: every group of order 15 is cyclic.

Let n,, be the number of Sylow p-subgroups of G. By the third Sylow theorem, we have n | 5
and ng = 1(mod 3). Thus ng = 1. Similarly, we have n; | 3 and ny = 1(mod 5), Thus ny = 1. It
follows that there is only one Sylow 3-subgroup and Sylow 5-subgroup, say P and B
respectively. Thus P;, By < G. Consider |P; N B;|, which divides 3 and 5. Thus |P; N B;| = 1 and
P, N B, = {1}. Also |B,B,| = 15 = |G| Thus

G2Px Byx27qX L7y

Three Sylow Theorems
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Claim: there are two isomorphism classes of groups of order 21.

Let G be a group of order 21 = 3 - 7. Let n,, be the number of Sylow p-subgroups of G. By the
third Sylow theorem, we have ng | 7 and ng = 1(mod 3). Thus ny = 1 or 7. Also we have n, | 3
and n, = 1(mod 7). Thus n, = 1. It follows that G has a unique Sylow 7-subgroup, say P,. Note
that P, <t G and P, is cyclic, say P, = (z : 7 = 1). Let H be a Sylow 3-subgroup. Since

|H| =3, Hiscyclicand H = (y : Y3 = 1). Since P, < G, we have yzy ! = z* for some

0 < < 6. It follows that

1 i3

z=v3ry? = (yry Ny 2 =ylaly 2 =y(yaly Ny =yt y =2

Since 2°° = rand z” = 1, we have i3 — 1 = 0(mod 7). Since 0 < i < 6, we have i = 1,2, 4.
1. If i = 1, then yzy ! = z, i.e. yz = zy. Thus G is an abelian group. Since P, < G, B, < G,
BNP, = {1}and |G| = |BP,
G2 P X P 27y XLy =7y
2. If i = 2, then yzy ! = 22. Thus

, we have

G={2'y?:0<i<6,0<j<2yzy ! =22}
3. If i = 4, then yzy~! = 2*. Note that

y2ry? = y(yzy Ny

NV |
=yry
_ pl6 _ 2

Note that 32 is also a generator of H. Thus by replacing y by 32, we get back to case 2. It follows
that there are two isomorphism classes of groups of order 21.
7 Finite Abelian Groups

7.1 Primary Decomposition

Let G be a group and m € Z we define

G ={geG|lgm=1}

Proposition 7.1

Let G be an abelian group. Then G(™ is a subgroup of G.

Proof: We have 1 = 1™ € G™). Also if g, h € G, since G is abelian, we have (gh)™ = ¢g™h™ =1
and thus gh € G™m), Finally, if g € G™) we have

()" =gm=(m " =1
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and thus g=' € G(™). By the subgroup test, G(™ is a subgroup of G. ]

Proposition 7.2
Let G be a finite abelian group with |G| = mk with ged(m, k) = 1. Then

1. G=Gm x G
2. ]G(m)‘ = m and ]G(k)] =k

Proof of 1: Since G is abelian, we have G™ 4 (G) and G*) 4 G. Also, since ged(m, k) = 1, there
exist x,y € Z such that 1 = mz + ky
Claim: G'™ N G* = {1}
If g€ G™ NG, then g™ = 1 = ¢g*. We have
z 7

g=gm =(g")"(¢*)" =1
Claim: G = G @Gk)
If g € G, then

1= g™k = (gm)* = (g*)"
It follows that g* € G™) and g™ € G®). Thus
g =gm*th = (gF)¥(g™)" € G™GW
Combining both claims, by Theorem 3.13, we have

G =~ GmGk

Proof of 2: Write ‘G(m)| =m’ and ‘G(k)‘ = k’. By (1), we have mk = |G| = m'k’

Claim: ged(m, k') = 1

Suppose that gcd(m, k") # 1. Then there exists a prime p such that p | m and p | ¥’. By Cauchy’s
theorem, there exists g € G*) with o(g) = p. Since p | m, we have g™ = (gp)% = 1,ie. g € G™ By
(1), we have g € G™ N G®) = {1}, which gives a contradiction since 0(g) = p. Thus we have

ged(m, k') = 1. Note that since m | m’k’ and gecd(m, k') = 1, we have m | m/. Similarly, we have

k | k’. Since mk = m’k’, it follows that m = m’ and k = k’. ]
As a direct consequence of proposition 7.2, we have

Theorem 7.3 Primary Decomposition Theorem

Let G be a finite abelian group with |G| = p;* pZ’“ where py, ..., p;, are distinct primes and
Ny, ..., N, € N. Then we have

1. G =cP") x .. x gPE")

2. ’G@?i)’ —pl (1<i<k).

Primary Decomposition 42



PMATH 347 FaLL 2025 JAKE EDMONSTONE

Let G = Z%5. Then |G| = 12 = 223. Note that
G® ={a€eZis|a®=1}={1,3,9}
GYW ={a€Ziy|a* =1} ={1,5,8,12}

By theorem 7.3, we have

7ty = {1,5,8,12} x {1,3,9}

7.2 Structure Theorem of Finite Abelian Groups
We have seen that if |G| = p (a prime), then G = C,. Also, if |G| = p?, then G = C,2 or G = C, x C,.
Question How about abelian groups of order p3, p* and p™ for general n € N.

Proposition 7.4

Let G be a finite abelian p-group that contains only one subgroup of order p, then G is cyclic. In
other words, if a finite abelian p-group G is not cyclic, then G has at least two subgroups of

order p.

Proof: Let y € G be of maximum order, i.e. o(y) > o(x) Vz € G.

Claim: G = (y).

Suppose that G # (y). Then the quotient group G//(y) is a nontrivial p-group, which contains an
element z of order p by Cauchy’s theorem. In particular z # 1. Consider the coset map 7 : G — G/(y).
Let € G such that w(x) = z. Since 7(2P) = 7(z)? = 2P = 1, we see that P € (y). Thus 2P = y™ for
some m € Z. Two cases:

1. If p 4 m since o(y) = p" for some r € N, by prop 2.11, o(y™) = o(y). Since y is of maximum
order, we have o(zP) < o(z) < o(y) = o(y™) = o(aP) which is a contradiction.

2. If p | m, then m = pk for some k € Z. Thus we have zP = y™ = ypk. Since G is abelian, we have
(:ij_k )p = 1. Thus zy~* belongs to the one and only subgroup of order p, say H. On the other
hand, the cyclic group (y) contains a subgroup of order p, which must be the one and only H.
Thus zy~* € (y), which implies that = € (y). It follows that z = () = 1, a contradiction.

By combining the above two cases, we see that G = (y). N

Proposition 7.5

Let G # {1} be a finite abelian p-group. Let C' be a cyclic subgroup of maximum order. Then G
contains a subgroup B such that

G=CBand CNnB={1}

Theorem 7.6

Let G # 1 be a finite abelian p-group. Then G is isomorphic to a direct product of cyclic groups.
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Proof: By prop 7.5, there exists a cyclic group C] and a subgroup B; of G such that G = C| x B;. Since
|B;| | |G| by Lagrange’s theorem, the group B, is also a p-group. Thus if B; # {1}, by prop 7.5, there
exists a cyclic group C, and a subgroup B, such that B; = C, x B,. Continue in this way to get cyclic
groups C}, ..., C; until we get B, = {1} for some k € N. Then G = (| x --- x C},. O
Remark
One can show that the decomposition of a finite abelian p-group into a direct product of cyclic
groups is unique up to its order.

Combining the remark, theorem 7.6 and theorem 7.3, we have

Theorem 7.7 Structure Theorem of Finite Abelian Groups
If G is a finite abelian group, then
G = Zp;ll X «oe X Zp'gk

Where Z,,n: = (iji , —I—) = C,n: are cyclic groups of order p; ¢ (1 < i< k). Note that p; are not
necessarily distinct. The numbers p;* are uniquely determined up to their order.

Note that if p; and p, are distinct primes, then Cp?l X Cpgz = Cp?l pr2- Thus by combining suitable
coprime factors together,

Theorem 7.8 Invariant Factor Decomposition of Finite Abelian Groups
Let G be a finite abelian group. Then

n

G=Z, X XL

ks

where n, € Nyn; > landng | ny |- | n,.

Let G be an abelian group of order 48. Since 48 = 2% - 3, by theorem 7.3, G = H x Z3, where H
is an abelian group of order 2%. The options for H are Zys, Zgs X Zg, Zigz X Loz, Loz X Ly X T
and Zy X Zg X Zg X Z,. Thus we have

G 2 Zigs X Lz = Zyg

G 2 Zgs X Ly X Lg = Lo X Ligy

G = Zgz X Ligz X Lg =2 gz X Ly

G 7o X Ly X Ly X Lig =2 Lo X Ly X Ly

G 2Zg X Ly X Ly X Ly X Lig = Loy X Loy X Loy X ZLg

There are 5 non-isomorphic groups in total.
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8 Rings

8.1 Rings

A set R is a (unitary) ring if it has two operations, addition + and multiplication - such that

(R, +) is an abelian group and (R, -) satisfies the closure, associativity and identity properties of

a group, in addition to a distributive law. More precisely, if R is a ring, then for all a,b,c € R

1.

ROBECCENS I SN S e GO U

a+beR

a+(b+c)=(a+b)+c

There exists 0 € Rsuchthata+0=a=0+a (0 is called the zero of R)

There exists —a € R such thata + (—a) =0 = (—a) +a (—a is called the negative of a)
a+b=b+a

ab=a-beR

a(bc) = (ab)c

There exists 1 € Rsuchthata-1=a=1-a (1is called the unity of R)
a(b+c)=ab+acand (b+ c)a =ba+ ca (distributive law)

The ring R is called a commutative ring if it also satisfies ab = ba.

Z,Q,R, C are commutative rings.

Forn € N, n > 2, Z,, is a commutative ring.

Forn € N,n > 2, M, (R) is a (non commutative) ring

Warning

Note that since (R, -) is not a group, there is no left or right cancellation. For example, in Z,

0-z=0"ydoesnotimply z = y.

Given a ring R, to distinguish the difference between multiples in addition and in multiplication,

forn € Nand a € R, we write

Rings

na:=a-+a+--+a
N — —
n times

an;:a.a.....a
N ——— —

n times
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Recall

foraring Randa € R
. 0 ra= 0
—— ——
integer zero of R
2. 1 a=a
—
integer

3. —(—a)=a

For n € N, we define

For a group G and g € G, we have ¢ = 1,g' = gand (¢ !)

-1

(~n)as= (<a) + -+ (<a)

n times

Also, we define a® = 1. If the multiplicative inverse of a exists,

a ™ =(a1)"

Remark

By Prop 1.2 for n, m € Z, we have
1. (na) + (ma) = (n+m)a
2. n(ma) = (nm)a
3. n(a+b) =na+nb

Proposition 8.1

Let Rbearingandr,s € R.
1. If 0 is the zero of R, then

Or=0=10
)s = r(—s) = —(rs)
)(—s) =rs

or any m,n € Z,

2. (—r
3. (—r
4. F

(mr)(ns) = (mn)(rs)

= g. Thus for addition, we have,

A trivial ring is a ring of only one element. In this case, we have 1 = 0.

Remark

If R is a ring with R # {0}, since r = r1 for all 7 € R, we have 1 # 0.
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Let R, ..., R, be rings. We define component-wise operations on the product R; x --- X R, as
follows:

(ryy ey ) + (815 -0y 8,,) = (1] + 81, o0 Ty, + S,,)
(7"1, ...,Tn) ) (817 d00g, Sn) = (7"181, "-7rn3n)

One can check that R, x --- X R,, is a ring. This set is called the direct productof R,, ..., R

n*

If R is a ring, we define the characteristic of R denoted by ch(R), in terms of the order of 1 in
the additive group (R, +):

_fn ifo(lg) =neNin (R,+)
ch(R) = {0 o 0(1:) =00 in (R, +)

Remark
For k € Z, we write kR = 0 to mean that kr = 0 for all » € R.
By Prop 8.1, we have

kr =k(1gr) = (klg)r

Thus kR = 0 if and only if k1 = 0. By Prop 2.6 and 2.7,

Proposition 8.2

Let R be aring and k € Z.
1. f ch(R) =n € N, thenkR =0iffn | k
2. Ifch(R) =0,then kR =01iff k =0

Each of Z, Q, R, C has characteristic 0. For n € N with n > 2, the ring Z,, has characteristic n.
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8.2 Subrings

A subset S of aring R is a subring if S is a ring itself with 1¢ = 15 (with the same addition and
multiplication). Note that properties (2),(3),(7), and (9) of a ring are automatically satisfied. Thus
to show that S is a subring, it suffices to show

Subring Test:
S C R is a subring if
1.1,€ 8
2. If s,t € S,thens —t,st € S.

Note that if (2) holds, then0 =s—s € Sand -t =0—t € S

We have a chain of commutative rings

ZCQCRCC

If R is a ring, the center Z(R) of R is defined to be
Z(R)={z€ R|zr=rzVr € R}
Note that 1, € Z(R). Also, if s,t € Z(R), then for r € R,

(s—t)yr=sr—tr=rs—rt=r(s—t)

(st)r = s(tr) = s(rt) = (sr)t = (rs)t = r(st)

By the subring test, Z(R) is a subring of R.

Let
Zli) ={a+bi|a,b e Zand i* = -1} CC.

Then one can show that Z[i] is a subring of C, called the ring of Gaussian integers.

8.3 Ideals
Note

Let R be a ring and A an additive subgroup of R. Since (R, +) is abelian, we have A < R. Thus
we have the additive quotient group

R/IA={r+A|reR}withr+A={r+a|ac A}

Using the known properties about cosets and quotient groups, we have
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Proposition 8.3

Let R be a ring and A an additive subgroup of R. For r, s € R, we have
Lr+A=s+Aiff(r—s)eA

(r+A)+(s+A)=(r+s)+A

0 + A = A is the (additive) identity of R/A

—(r+ A) = (—r) + A s the (additive) inverse of r + A

k(r+A)=kr+ Aforallk € Z

O

Remark

Since R is a ring, it is natural to ask if we could make R/A a ring. A natural way to define
multiplication in R/ A is that

(r+A)(s+A)=(rs+A) Vr,seR (%)

Note that we could haver + A =r; + Aand s + A = s; + A withr # r; and s # s;. Thus in
order for (x) to make sense, a necessary condition is

r+A=ri+Aands+A=s,+A=rs+A=r;s;,+4

In this case, we say that multiplication (r + A)(s + A) is well-defined.

Proposition 8.4
Let A be an additive subgroup of a ring R. For a € A define
Ra={ra|r € R} and aR = {ar | r € R}

Then the following are equivalent:
1. ReC AandaRC A Vac A
2. For r, s € R, the multiplication (r + A)(s + A) is well-defined in R/ A.

Proof of (1) = (2):Ifr+ A=r, + Aand s + A = s; + A, we need to show that rs + A = r;s; + A.
Since (r —r;) € Aand (s —s;) € A, by (1), we have

rS—1ri8, =1TS—ris+r;s—ri8g=(r—ry)s+r(s—s;) €A

By proposition 8.3, rs + A = rys; + A. ]
Proof of (2) = (1):Letr € R and a € A. By prop 8.1, we have

ra+A=(r+A)(a+A)=r+A4)0+A)=r0+A=0+A=A4

Thus ra € A and we have Ra C A. Similarly, we can show aR C A. ]
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An additive subgroup A of a ring R is an ideal of R if Ra C R and aR C A.
Ideal Test:

1.0 A
2. Fora,b€ Aandr € R,wehavea —b € Aandra,ar € A

If R is a ring, then {0} and R are ideals of R.

Let R be a commutative ring and a4, ..., a,, € R. Consider the set I generated by a4, ..., a,, ie.
I={ay,...,a,)={ra, +—-+r,a,|r; € R}
Then one can show that I is an ideal.
Proposition 8.5
Let Abe anideal of aring R.If 1, € A, then A = R.
Proof: For every r € R, since Aisanidealand 1, € A, we have r = rl, € A. It follows that
R C A C R and hence R = A. ]

From the above discussion, we have

Proposition 8.6

Let A be an ideal of a ring R. Then the additive quotient group R/ A is a ring with multiplication
(r+A)(s+ A) =rs+ A. The unity of R/Ais 1 + A.

Let A be an ideal of a ring R. The ring R/ A is called a quotient ring of R by A.

Let R be a commutative ring and A an ideal of R.If A = aR = Ra for some a € R, we say A is
a principal ideal generated by a and is denoted by A = (a).

If n € Z, then (z) = nZ is an ideal of Z.
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Proposition 8.7

All ideals of Z are of the form (z) for some n € Z.If (n) # {0} and n € N, then the generator is
uniquely determined.

Proof: Let A be an ideal of Z. If A = {0}, then A = (0). Otherwise, choose a € A with a # 0 and |A|
minimum. Clearly, (a) C A. To prove the other inclusion, let b € A. By the division algorithm, we have
b=gqa+rwithq,r € Zand 0 < r < |a|.Ifr # 0, since A is an ideal, and a,b € A, we have

r =b—qa € Awith |r| < |al|, a contradiction. Thus r = 0 and b = qa, i.e. b € (a). It follows that

A = {(a). [

8.4 Isomorphism Theorems

Let R, S be rings. A mapping 0 : R — S is a ring homomorphism if for all a,b € R
1. 6(a+b) =0(a)+0(b)
2. O(ab) = 0(a)d(d)
3. 0(1z) = 14

The mapping k + [k] from Z to Z,, is a surjective ring homomorphism.

If Ry, R, are rings, the projection 7, : Ry X Ry — Ry defined by 7 (r,75) = 7, is a surjective
ring homomorphism. Similarly for 7,.

Proposition 8.8

Let 6 : R — S be a ring homomorphism.

1. 6(0gz) = 0g

2. (—r) =—06(r)

3. O(kr) = kO(r) forall k € Z

4. (r™) = 6(r)™ foralln € NU {0}

5. If a € R* (the set of elements in R which have multiplicative inverses, such a is called a

unit of R) then 6(a*) = 6(a)* for all k € Z.

A ring isomorphism is a bijective homomorphism. If there exists an isomorphism between rings
R and S, we say R and S are isomorphic, denoted R = S.
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Let 6 : R — S be a bijection of rings with 8(rr’) = 6(r)0(r’) for all ,r" € R. Write (1) = e.
Prove that se = es = s for all s € S (hence condition 3 for a ring homomorphism can be omitted
in this case).

Let 0 : R — S be a ring homomorphism. The kernel of 0 is defined by
ker0 ={re R|6(r)=0}CR
and the image of 6 is defined by
imf=60(R)={0(r)|re R} CS

We have seen earlier that ker § and im 6 are additive subgroups of R and S respectively.

Proposition 8.9

Let  : R — S be a ring homomorphism. Then
1. im @ is a subring of S
2. ker 0 is an ideal of R

Proof of 1: Since im 6 is an additive subgroup of S, it suffices to show that §(R) is closed under
multiplication, and 14 € 8(R). Note that 1¢ = (1) € 0(R). Also if s; = 0(ry) and s, = 6(r,), then

8185 = 0(r1)0(ry) = 0(ry73) € O(R)

By the subring test, im 6 is a subring of S. ]
Proof of 2: Since ker 0 is an additive subgroup of R, it suffices to show that ra, ar € ker @ for all r € R,
a € ker.If r € R and a € ker 0, then

f(ra) =0(r)8(a) =6(r)-0=0
Thus ra € ker 0. Similarly, one can show ar € ker 0. Thus ker 6 is an ideal of R. O

Theorem 8.10 First Isomorphism Theorem

Let 0 : R — S be a ring homomorphism. We have R/ ker 6 = im 6.

Proof:Let A = ker 6. Since A is an ideal of R, R/ A is a ring. Define the map

0:R/A— im0
r+ Ar— 6(r)

Notethatr + A=s+ A<=>r—s€ A<= 0(r—s)=0<= 0(r) = 0(s). Thus 0 is well defined and
injective. Also, 6 is clearly surjective. One can show that @ is a homomorphism. It follows that  is a
ring isomorphism and im 6 = R/ ker O
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Remark

Let A, B be subsets of a ring R. If A and B are both subrings, then A N B is the largest subring
of R contained in both A and B.

To consider the smallest subring of R containing both A and B (A, B not necessarily subrings),
we define the sum A 4 B to be

A+B={a+bla€ Aandbec B}

One can show

Proposition 8.11

If R is a ring, then we have
1. If A, B are subrings of R (with1, = 15 = 15) then A N B is a subring of R.
2. If A is a subring and B is an ideal of R, then A + B is a subring of R
3. If A and B are ideals of R, then A + B is an ideal of R.

Using the first isomorphism theorem, one can show (see A8)

Theorem 8.12 Second Isomorphism Theorem

Let A be a subring and B an ideal of a ring R. Then A + B is a subring of R, B is an ideal of
A+ B, AN Bis an ideal of A and

(A+ B)/B= A/(AN B)

Theorem 8.13 Third Isomorphism Theorem
Let A and B be ideals of a ring R with A C B. Then B/ A is an ideal in R/ A and
(R/A)/(B/A) = R/B

Corollary 8.14 Correspondence Theorem / Fourth Isomorphism Theorem

Let R be aring and A an ideal. There exists a bijection between the set of ideals B of R that
contains A and the set of ideals of R/ A.

Combining the third isomorphism theorem and the fact that all ideals of Z are principal, all
ideals of Z,, are principal.

Isomorphism Theorems 53



PMATH 347 FaLL 2025 JAKE EDMONSTONE

Theorem 8.15 Chinese Remainder Theorem

Let A, B be ideals of R
1. fA+ B=RthenR/(ANB)= R/AX R/B
2.IfA+ B=Rand ANB={0},then R~ R/Ax R/B

Proof: (2) obviously follows from (1), so we prove (1). Define§ : R — R/A x R/B by

6(r) = (r + A,r + B). Then 0 is a ring homomorphism with ker § = A N B. To show 6 is surjective, let
(s+ A,t+ B) € R/A x R/B with s,t € R. Since A+ B = R, there exists a € A and b € B such that
1 =a+b.Letr = sb+ ta. Then

s—r=s—sb—ta=s(l—b)—ta=sa—ta=(s—t)a€ A

Thus s + A = r + A. Similarly, we have t + B =7+ B. Thus 0(r) = (r+ A,r+ B) = (s + A,t + B).
Thus im @ = R/A x R/B. By the first isomorphism theorem, we have

R/(ANB)=~R/Ax R/B

]
Let m,n € N with ged(m,n) = 1. By Bézout’s Lemma, we have 1 = mr + ns for some r, s € Z.
Thus 1 € mZ + nZ and hence mZ + nZ = 7Z. Also, since ged(m, n) = 1, we have
m#Z N nZ = mnZ. By CRT,
Corollary 8.16
1. If m,n € N with gcd(m,n) = 1, then
/= /N /M
2. If m,n € Nwith m,n > 2 and ged(m,n) ¢(mn) = p(m)ep(n), where p(m) = |Z%,| is the
Euler (p-function
Proof of 2: From (1), we have
(Zon)" = (Lo, X Ly)" = Ly, X L,
Since |Z},| = ¢(m), we have o(mn) = p(m)p(n) O

Remark

Let m,n € Z with gcd(m,n) = 1. For a, b € Z, by Cor 8.16 and the proof of Thm 8.15, for

[a] € Z,, and [b] € Z,,, there exists a unique [c] € Z,,,, such that [c] = [a] in Z,,, and [c] = [b] in
Z,,. In other words, the simultaneous congruences £ = a (mod m) and z = b (mod n) has a

unique solution z = ¢ (mod mn), which is CRT in Math 135.
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Proposition 8.17

If R is a ring with [R| = p a prime, then R = Z,.

Proof: Define 0 : Z,, — R by 0[k] = k1. Note that since R is an additive group and |R| = p, by
Lagrange, o(1g) = 1 or p. Since 1 # 0, we have o(1z) = p. Thus

k] =[m]<=p|(k—m)<= (k—m)lp=0<klp=mlzin R

Thus 0 is well-defined and injective. Since ‘Zp| = p = |R| and 0 is injective, 0 is also surjective. Finally,
once can prove that 6 is a ring homomorphism. It follows that 6 is a ring isomorphism and R = Z,,. []

What are the possible rings R with |R| = p? where p is a prime.

9 Commutative Rings

9.1 Integral Domains and Fields

Let R be a ring. We say u € R is a unit if u has a multiplicative inverse in R. Denoted by u 1.
We have uu~' = 1 = u'u. Note that if v is a unit in R, and , s € R we have

ur=us=—=>s=s and ru=su=—r=-=:s

Let R* denote the set of all units in R. One can show that (R, -) is group called the group of units
of R.

Note that 2 is a unit in Q, but not a unit in Z. We have Q* = Q \ {0} and Z* = {£1}.

Consider the ring of Gaussian integers Z[i]. One can show Z[i]* = {41, +i}
Hint: Prove that |zy| = |z||y| and |z| = 1 <= z is a unit.

A ring R # {0} is a division ring if R* = R\ {0} i.e. every nonzero element of R is a unit of R.
A commutative division ring is called a field.

Q, R, C are fields, but Z is not a field.
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We recall that the equation [a][z] = [1] in Z,, has a solution iff gcd(a,n) = 1 for all
a€{l,2,..,p—1}. Thus Z; = Z, \ {0} and Z,, is a field. However, if n is not prime, say

n = ab with 1 < a,b < n. Then the nonzero congruence classes [a], [b] are not units in Z,, as
there is no solution for [a][z] = [1] and hence Z} # Z,, \ {0}. Thus Z,, is a field iff n is a prime.

Remark

If R is a division ring or a field, then its only ideals are {0} or R since if A # {0} is an ideal of
R, then 0 # a € A implies that 1 = aa~! € A. By prop 8.5, A = R. As a consequence, if we have
a ring homomorphism a field F to a ring S, since ker 6 is an ideal, ker § = {0} or F. Hence 6 is

either injective or the zero map.

(This is quite hard) Prove that every finite division ring is a field.

Note

For r, s € R, we have rs = 0 implies that 7 = 0 or s = 0. This property is useful in solving
equations, say if 22 —z — 6 = O i.e. (z — 3)(z — 2) = 0, then x = 3 or x = 2. However, such
property is not always true. For example, [2][3] = [6] = [0] in Z, but [2] # [0] and [3] # [0].

Solve [(z — 2)(x — 3)] = [0] in Zg.

Let R # {0} be aring. For 0 # a € R, we say a is a zero divisor if there exists 0 # b € R such
that ab = 0.

In Zg, [2], [3], [4] are zero divisors since [2][3] = [0] = [4][3].

Note that in M,(R), we have

10
Thus [0 0] is a zero divisor.
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Proposition 9.1

Given a ring R, for all a, b, c € R, the following are equivalent:
1. fab=0,thena=00rb=0
2. Ifab=acand a # 0,thenb = ¢
3. If ba = caand a # 0, then b = ¢

Proof: We prove (1) <= (2) and the proof of (1) <= (3) is similar.
(1) = (2): Let ab = ac with a # 0. Then a(b — ¢) = 0. By (1), since a # 0, we have b — c = 0 i.e.
b=c.
(2) = (1): Let ab = 0 in R. Two cases:
1. If a = 0, then we are done
2. If a # 0, then ab = 0 = a0. By (2), since a # 0, we have b = 0.

L]
A commutative ring R # {0} is an integral domain if it has no zero divisors i.e. if ab = 0 in R,
thena =0o0rb = 0.
Z is an integral domain since for a,b € Z, ab = 0 implies a = 0 or b = 0.
Note that if p is a prime, if p | ab then p | a or p | bi.e. [a][b] = [0] in Z,, implies that [a] = [0] or
[b] = [0]. Thus Z,, is an integral domain. However, if n = ab with 1 < a,b < n, then [a][b] = [0]
with [a] # [0] and [b] # [0]. Thus Z,, is an integral domain iff n is a prime.
Proposition 9.2
Every field is an integral domain.
Proof: Let ab = 0 in a field R. We need to show that a = 0 or b = 0. Two cases:
1. If a = 0, then we are done
2. If a # 0, since R is a field, a € R* and a~! € R exists. Then
b=1-b=(atab) =a'(ab) =a'0=0
Thus R is an integral domain.
[

Remark

Using the above proof, one can show that every subring of a field is an integral domain.
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Remark

The converse of Prop 9.2 is not true, for example, Z is an integral domain but not a field.

The Gaussian integers Z[i] is an integral domain, but not a field.

Proposition 9.3

Every finite integral domain is a field.

Proof: Let R be a finite integral domain and 0 # a € R. Consider the map

0:R— R
r— ar

Since R is an integral domain, ar = as and a # 0 implies that r = s. Hence 0 is injective. Since R is
finite, € is surjective. In particular, there is b € R such that ab = 1. Since R is commutative, we have

ab =1 = ba, i.e. a is a unit. Hence R* = R\ {0} and R is a field. O
Recall

The characteristic of a ring R, denoted by ch(R) is the order of 15 in (R, +). We write
ch(R) =0ifo(lz) =occandch(R) =nifo(ly) =n € N.

Proposition 9.4

The characteristic of any integral domain is either 0 or a prime p.

Proof: Let R be an integral domain. Two cases:
1. If ch(R) = oo, then we are done.
2. Note that since R # {0}, we have n # 1.If ch(R) = n € N\ {1}, suppose that n is not prime, say
n = abwith 1 < a,b < n.If 1 is the unity of R, then by Prop 8.1, we have

(@-1)(b-1)=(ab)(1-1)=n-1=0

Since R is an integral domain, we have a - 1 = 0 or b - 1 = 0, which leads to a contradiction since
o(1) = n. Thus n is prime.

[
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Remark

Let R be an integral domain with ch(R) = p, a prime. For a,b € R, we have

(a+b)” =a? + (zlj)apflb + (g)aHbQ oo (pfl>abpl + b

Since p is a prime, p | (?) forall 1 < i < (p — 1). Since ch(R) = p, we have
(a+b)P = aP + bP

9.2 Prime Ideals and Maximal Ideals
Let p be a prime and a, b € Z. We recall from Math 135 that p | ab implies p | a or p | b. In other words,
if ab € pZ, then a € pZ or b € pZ.

Let R be a commutative ring. An ideal P # R of R is a prime ideal if whenever r, s € R satisfy
rs € P,thenr € Pors € P.

{0} is prime ideal of Z

For n € N withn > 2, nZ is a prime ideal of Z if and only if n is prime.

Proposition 9.5
If R is a commutative ring, then an ideal P of R is a prime ideal if and only if R/P is an integral
domain.
Proof: Since R is a commutative ring, so is R/P. Note that
R/P+{0} <~ 0+P+1+P<1¢ P<— P+R.
Also, for r, s € R, we have

P is a prime ideal <= rs € P implies that r € P or s € P
< (r+ P)(s+ P) = 0 + P implies that
r+P=0+Pors+P=0+P
< R/P is an integral domain
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Let R be a commutative ring. An ideal M # R of R is a maximal ideal if whenever A is an ideal

suchthat M C A C R,then A= M or A = R.

Remark

Let M be a maximal ideal of R and r ¢ M. Then M C (r) + M C R. Since M # (r) + M, we
have (r) + M = R.

Proposition 9.6

If R is a commutative ring, then an ideal M of R is a maximal ideal if and only if R/M is a field.

Proof: Since R is a commutative ring, so is R/M. Note that
R/M#{0} <= 0+M+#*1+M<—=1¢ M M+*R
Also, for r € R, note that r ¢ M iff r + M # 0 + M. Thus we have

M is a maximal ideal
< (r)+ M =R forany r ¢ M
< le(r)+Mforallr¢ M
< Vr ¢ M,there exists se R st. 1+ M =rs+ M
< Vr+ M # 0+ M, there exists s+ M € R/M s.t. (r+M)(s+M)=1+M
< R/M is a field

Combining Prop 9.2, 9.5 and 9.6, we have

Corollary 9.7

Every maximal ideal of a commutative ring is a prime ideal.

Remark

The converse of Cor 9.7 is not true. For example, in Z, {0} is a prime ideal, but not a max ideal.

Consider the ideal (z? + 1) in the ring Z[z]. The map 0 : Z[z] — Z[i] defined by 0(f(z)) = f(i)
is surjective since 6(a + bz) = a + bi. Also, one can check that the kernel of the map is (z? + 1)
(see Piazza). By the first isomorphism theorem, we have Z[z]/(z* + 1) = Z][i]. Since Z[i] is an
integral domain, but not a field, we conclude that the ideal <x2 + 1) is prime, but not maximal.
Note that (z% + 1) C (22 + 1,3) C Z[z]. We have Z[z]/(z? + 1,3) = Zs[z]/(z* + 1) and

x? + 1 is irreducible in Z;[z].
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9.3 Fields of Fractions

Let R be an integral domain. We now construct a field F' of all fractions % from R.

Let R be an integral domain and let D = R \ {0}. Consider the set X = R x D. We say

(r,s) = (ry,s,) on X iff rs; = rys. One can show that = is an equivalence relation on X. Motivated
by the case R = Z, we now define the fraction Z to be the equivalence class [(r, s)] of the pair (r, s) on
X. Let F' denote the set of all these fractions, i.e.

Fz{t TER,SED}:{C r,sGR,s#O}
s s
The addition and multiplication of F' are defined by

s 8 584 s 81 88

Note that ss; # 0 since R is an integral domain and thus these operations are well-defined. Then one
can show that with the above defined addition and multiplication, F' becomes a field with the zero
being %, the unity %, the negative of g is _?T Moreover, if g # 0in F, then r # 0 and thus f € Fand
we have

r S TS TS 1
—-—:—:—:—EF
s r sr rSs 1

In addition, we have R = R’ where R’ = {I ] r € R} C F. Thus we have

Theorem 9.8

Let R be an integral domain. Then there exists a field F’ consisting of fractions * withr,s € R
and s # 0. By identifying 7 = { for all » € R, we can view R as a subring of F'. The field F' is
called the field of fractions of R.

10 Polynomial Rings
10.1 Polynomials
Let R be a ring and z a variable. Let
R[z] ={f(z) =ay+ a1z + - +a,z2™ | meNU{0} anda; € R (0<i<m)}
Such f(x) is called a polynomial in x over R.If a,, # 0, we say f(x) has degree m, denoted by
deg f = m, and we say the a,, is leading coefficient of f(x). If the leading coefficient a,, = 1, we say

f(x) is monic. If deg f = 0, then f(z) = ay € R\ {0}. In this case, we say f(x) is a constant
polynomial. Note that

f(z)=0<«<=ay,=0,a; =0,...

0 is also a constant polynomial and we define deg 0 = —o0. Let f(x) = ay + a1z + - + a,,2™ € R[z]
and g(z) = by + byx + -+ + byz™ € R[x] with m < n. Then we write a; = 0 forallm + 1 <i < n. We
can define addition and multiplication on R[z] as follows:

f(z) +g(z) = (ag + by) + (ag +by)z + - + (@, +b,)2"
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and
f(z)g(z) = (ag + a2 + -+ a,,z™)(by + byz + -+ + b, x™)
= agby + (agh; + ayby)z + (asby + arby + aghy)a® + - + (a,,b, )™ "
=cy+ 1T+ o + -+ pp 8™
where

Ci = aobi + albi—l + -+ ai—lbl + a’ibO

Proposition 10.1

Let R be a ring and z a variable
1. R[x]isaring
2. R is a subring of R|[z]
3. If Z = Z(R) is the center of R, then Z(R[z]) = Z|[z]

Proof: (1) and (2) are left as exercises. OJ
Proof of 3: Let f(x) = ay + a1z + - + a,,z™ € Z[z] and g(x) = by + bz + --- + b,,z™ € R[x]. We
have

f(@)g(x) =cy + 17 + cox® + -+ + ¢y z™ "

with
¢; = agb; +ayb; g + -+ a; 1by +a;by

Since a; € Z, we have a;b; = a;b, for all 4, j. Thus we get f(z)g(z) = g(z) f(z) for all g(z) € R[] and
hence Z[z] C Z(R|x]). To show the other inclusion, if h(z) = ¢y + ¢c;z + ... + c,z° € Z(R[z]), then
for all 7 € R, we have h(z)r = rh(z). Thus, ¢;r = rc; forallr € Rand 0 < i < s. Thus, ¢; € Z and
Z(R[x]) C Z|[z]. It follows that Z(R[z]) = Z[z]. N
Warning

Although f(x) € R|z] can be used to define a function from R to R, the polynomial is not the
same as the function it defines. For example, if R = Z,, there are only 4 different functions from
Z4 to Z,. However, the polynomial ring Z, [z] is an infinite set.

Proposition 10.2

Let R be an integral domain. Then
1. R[z]is an integral domain.

2. If f £ 0and g # 0 in R|z], then

deg(fg) = deg(f) + deg(g) (product formula)
3. The units in R[z] are R*, the units in R.

Proof of 1,2: Suppose that f(z) # 0 and g(x) # 0 are polynomials in R[x], say
f(z) =ay+a,x+ - +a,,2™and g(x) = by + byz + -+ + b, x™ with a,,, # 0 and a,, # 0. Then
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f(x)g(x) = (ambn)xm+n +t aObO

Since R is an integral domain, a,,b,, # 0 and thus f(z)g(z) # 0. It follows that R|z] is an integral
domain. Moreover,

deg(fg) = deg(f) + deg(g)

Thus (1) and (2) follow. L]
Proof of 3: Let u(x) € R[x] be a unit with inverse v(x). Since u(z)v(x) = 1, by (2) we have

deg(u) + deg(v) = degl =0

Since u(z)v(x) = 1, we have u(z) # 0 and v(z) # 0. Since degu > 0 and degv > 0, the above
equation implies that degu = 0 = degv. Thus u(z), v(z) are units in R and hence R[z]* C R*. Since
R* C R[z|*, we have R[z]* = R*. ]
Remark

Note that in Z,[z], we have 2x - 2z = 4x? = 0 thus the product formula doesn’t hold here since
Z, is not an integral domain.

Remark

To extend the product formula in Prop 10.2 to 0, we define deg 0 = 4-o00.

10.2 Polynomials Over a Field

Let F be a field and f(z), g(x) € F[z]. We say f(z) divides g(x), denoted by f(z) | g(x), if there
exists ¢(z) € F[z] such that g(z) = q(z) f(z).

Proposition 10.3

Let F be a field. f(z), g(z), h(x) € Flz].
1. If f(z) | g(x) and g(x) | h(z), then f(x) | h(z). (transitivity of divisibility)

2. If f(z) | g(z) and f(z) | g(z), then f(z) | (9(x)u(z) + h(z)v(z)) for any
u(x),v(z) € F[x] (divisibility of integer combinations)

Recall

Fora,b € Zifa |band b | aand a,b > 0, then a = b. The following is its analogue in F[x]

Proposition 10.4

Let F be a field and f(z), g(x) € F|[z]| be monic polynomials. If f(z) | g(z) and g(x) | f(x), then
f(z) = g(z).
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Proof: Since f(x) | g(z) and g(z) | f(x), we have g(z) = r(x) f(x) and f(x) = s(z)g(z) for some
r(z), s(x) € F[z]. Then f(x) = s(z)r(x) f(x). By Prop 10.2, we have deg f = deg s + degr + deg f,
which implies that deg s = degr = 0. Thus f(x) = sg(z) for some s € F. Since both f(x) and g(x) are
monic, we have s = 1 and hence f(z) = g(z). O

Proposition 10.5 Division Algorithm

Let F be a field and f(z), g(x) € F|[x] with f(z) # 0. Then there exist unique q(x), r(x) € F|x]
such that

g(z) =q(z)f(z) + r(z) withdegr < deg f

Note that this includes the case for = 0 (this explains why we define deg 0 = —o0).

Proof: We first prove by induction that such ¢(z) and r(x) exist. Write m = deg f and n = degg. If
n < m, then g(z) = 0- f(x) 4+ g(z). Suppose n > m and the result holds for all g(x) € F|[x] with
degg < n. Write f(z) = ag + a1 + - + a,,z™ with a,,, # 0 and g(z) = by + byz + --- + b, ™. Since
Fis a field, a;} exists. Consider
g1(z) = g(z) — ba, =" " f(x)
= (bpa™ + by 12"+ o+ ) — by BT 0,2+ F 1T+ ag)
=0 2"+ (b,_y —bpayta, 1)zt + -

n-m

Since deg g, < n, by induction, there exist ¢, (z), r;(z) € F|z] such that g, (z) = ¢, (x) f(z) + r,(x)
with degr; < deg f. It follows that

g(x) = q;(z) + bya, " " f(x)
(¢ (z) f(2) +ry(2)) + byay, "™ f(x)
(1 () + bya,, a™™) f(x) + 7 ()

—1,.n—m

By taking q(z) = q,(z) + b, a 2" ™ and r(z) = r,(z), we have
9(z) = q(z) f(z) + r(z) withdegr < deg f
To prove uniqueness, suppose that we have g(z) = ¢, (z) f(z) + r,(z) with degr, < deg f. Then
r(z) —ri(z) = (@1 (z) — q(2)) ().
If i (z) — q(z) # 0, we get
deg(r —ry) = deg((q; — ¢)f) = deg(q, — q) + deg f > deg f

which leads to a contradiction since deg(r — ;) < deg f. Thus ¢; () — g(x) = 0 and hence
r(z) —ri(z) = 0. It follows that ¢, (z) = ¢(x) and r; () = r(x). O

Note

For a,b € Z \ {0}, the Bézout Lemma states that gcd(a, b) = azx + by for some z,y € Z.
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Proposition 10.6

Let F be a field and f(z), g(x) € F[z] \ {0}. Then there exists d(z) € F[z] which satisfies the
following conditions:

1. d(x) is monic

2. d(z) | f(z) and d(2) | g(z)

3. Ife(z) | f(z) and e(x) | g(z), then e(x) | d(x)

4. d(z) = u(z) f(z) + v(z)g(x) for some u(x),v(z) € Flz]

Note that if both d(z) and d, (x) satisfy the above conditions, since d(x) | d;(z) and
d,(x) | d(x) and both of them are monic, By prop 10.4, we have d(z) = d; (z). We call such d(z)
the greatest common divisor of f(z) and g(x) denote it by d(z) = ged(f(z), g(x))

Proof: Consider the set X = {u(x) f(z) + v(x)g(z), u(x),v(x) € F[z]}. Since f(z) € X, the set X
contains nonzero polynomials and thus monic polynomials (since F' is a field, if h(z) € X with leading
coefficient a, then a*h(z) € X is monic). Among all monic polynomials in X, choose

d(z) = u(z) f(x) + v(z)g(x) of minimal degree. Then (1) and (4) are satisfied. For (3), if e(z) | f(z) and
e(z) | g(x), since d(x) = u(z) f(z) + v(z)g(z) by prop 10.3, e(x) | d(x). It remains to prove (2). By the
division algorithm, write f(z) = ¢(x)d(x) + r(z) with degr < degd. Then

r(z) = f(z) — q(z)d(z)
= f(z) — q(z)(u(z)f(z) + v(z)g(x))
= (1 —q(@)u(z)) f(z) — (¢(z)v(z))g(z)
Note that if r(x) # 0, write ¢ # 0 be the leading coefficient of 7(z). Since F is a field, ¢! exists. The
above expression shows that ¢ ™17 (z) is a monic polynomial of X with deg(c™!r) = degr < degd,

which contradicts the choice of d(z). Thus r(z) = 0 and we have d(z) | f(z). Similarly, we can show
d(z) | g(x). Thus (2) follows. O

Recall

p € Zis a prime if p > 2 and whenever p = ab with a,b € Z, then a = +1 or b = +1 (note that
+1 are the units of Z).

If F is a field, a polynomial £(z) # 0 in F[x] is irreducible if deg ¢ > 1 and whenever
l(z) = £,(z)ly(x) in F[z], we have deg ¢; = 0 or deg ¢, = 0 (deg 0 polynomials are the units in
F[z]). Polynomials that are not irreducible are reducible.

If {(x) € F|x] satisfies deg ¢ = 1, then £(z) is irreducible.
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One can show that if deg f € {2, 3}, then f is irreducible iff f(d) # 0 foralld € F.

Let 4(z), f(x) € F[z]. If £(z) is irreducible and ¢(x) } f(x) then ged(¢(x), f(z)) =1

Recall

Given a prime p € Z and a, b € Z, Euclid’s Lemma states that if p | abthenp | a or p | b.

Proposition 10.7

Let F be a field and f(z), g(x) € F|z]. If {(z) € F[z] is irreducible and ¢ | f(x)g(z), then
U(z) | f(z) or b(z) | g(x).

Proof: Suppose £(x) | f(z)g(z). Two cases:
1. If {(x) | f(z) then we are done.
2. If¢(z) } f(x), then d(x) = ged(¢(x), f(x)) = 1. By Prop 10.6, we have

1 = £(z)u(z) + f(z)v(z) for some u(z),v(z) € Flz]
Then
9(z) = g(@)l(z)u(z) + g(z) f(z)v(z)
Since £(z) | £(z) and £(z) | f(z)g(z), By prop 10.3, we have £(z) | g(z).

[
Remark
Let f;(x), ..., f,,(x) € Fx] and let £(z) € F[z] be irreducible. If £(x) | f,(x)-f,, (x), by
applying Prop 10.7 repeatedly, we get £(x) | f;(x) for some i.
Recall
For an integer n € Z with |n| > 2, up to +1 sign, n can be written uniquely as a product of
primes. By induction and Prop 10.7, we have the following analogous result in F'[z].
Theorem 10.8 Unique Factorization Theorem

Let F be a field and f(z) € F[z] with deg f > 1. Then we can write f(x) = ¢, (x)---£,,(z)
where ¢ € F* and ¢, (z) are monic, irreducible polynomials (not necessarily distinct.) The

formulation is unique up to the order of ¢,.
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Use Theorem 10.8 to prove there are infinitely many irreducible polynomials in F'[z].

Recall

In Z, all ideals are of the form (n) = nZ and if n € N, then n is uniquely determined.

Proposition 10.9

Let F be a field. Then all ideals of F[x] are of the form (h(z)) = h(z)F[z] for some h(x) € F|[x].
If (h(x)) # 0 and h(z) is monic, then the generator is uniquely determined.

Proof: Let A be an ideal of F[x]. If A = {0}, then A = (0). If A # {0}, then it contains a monic
polynomial (since F is a field, if f € A with leading coefficient a, then a~! f € A). Among all monic
polynomials in A, choose h(x) € A of minimum degree. Then (h(z)) C A. To prove the other
inclusion, let f(z) € A. By the division algorithm, we have f(z) = q(z)h(z) + r(z) with

q(z),r(z) € F[z] and degr < degh. If r(x) # 0, let u # 0 be its leading coefficient. Since A is an ideal
and f(z),h(z) € A we have u lr(x) = u 1 (f(z) — q(z)h(z)) = u L f(z) —utq(x)h(z) € A which
is a monic polynomial in A with deg(u~'r) < deg h. This contradicts the minimum property of deg h.
Thus 7(z) = 0 and f(x) = q(x)h(z). It follows that f(z) € (h(z)) and hence A = (h(z)). To prove
uniqueness, suppose A = (h(z)) = (h,(x)). Since h(x) | h,(z) and hy(z) | h(x) and both of them are
monic, my Prop 10.4, we have h(z) = hy (). ]

Recall

We have seen in Z that all ideals are of the form (n) for some n € Z. For n > 2, if we divide an
integer by n, the remainder r € {0,1,...,n — 1}. Write (n) = nZ. Then we have

Z, =7Z/{n)={0+ (n),..,(n—1)+ (n)} = {[0], ..., [n — 1]}

We now consider its analogue in F'[z]. Let F' be a field. By Prop 10.9, all ideals of F[x] are of the form
(h(x)). Suppose that h(x) is monic and deg h = m > 1. Consider the quotient ring R = F[z]/(h(z))
and thus

R ={f(&) = f(z) + (h(@) | $(x) € Fla]}

Write t =T = x + (h(x)). We have h(t) = 0 in R (exercise). By the division algorithm, we can write
f(z) = q(z)h(x) + r(x) with degr < deg h = m. Thus one can show that

R={ay+at+-+a,t™ "' |a; €F and h(t) =0}

Consider the map 6 : F — R given by §(a) = @. Since 6 is not the zero map and ker 6 is an ideal of F,
we have ker § = {0}. Thus 0 is an injective ring homomorphism. Since F' = §(F'), by identifying F'
with (F), we have

R - {ao + a’lt + b + am71tm—1 ’ a,i E F aIld h(t) - 0}
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Note that in R we have

Hence this representation of the elements in R is unique.

Proposition 10.10

Let F be a field and h(z) € F[x] be monic with deg h = m > 1. Then the quotient ring
R = F[z]/(h(z)) is given by

R={ay+a;t+-+a, t" " |a; €F and h(t) =0}

in which an element of R can be uniquely represented by the above form.

Consider the ring R[z]. Let h(z) = 22 + 1 € R[z]. By Prop 10.10, we have

Rlz]/(z? +1) ={a+bt |a,beRand t* +1 =0} =C

Proposition 10.11

Let F be a field and h(z) € F[z] with degh > 1. The following are equivalent:
1. Flz]/(h(z)) is a field.
2. Flz]/{h(x)) is a integral domain.
3. h(z) is irreducible in F[x]

Proof: Write A = (h(z))
(1 = 2) Every field is an integral domain.
(2= 3)If h(z) = f(x)g(x) with f(z), g(x) € F[z], then

(f(z) + A)(g(z) + A) = f(z)g(z) + A=h(z) + A=0+ Ain Flz]/A

By (2), elther flx)+ A=0+Aorg(z)+ A=0+ A, ie. either f(z) € Aorg(z) € A. If

f(z) € A= (h(x)), then f(z) = q(z)h(x) for some g(x) € F[x]. Thus

h(x) = f(x)g( ) = q(z)h(x)g(z). Since F[z] is an integral domain, this implies that ¢(z)h(z) = 1,
which implies that deg g = 0. Similarly, if g(z) € A, then deg f = 0. Thus h(z) is irreducible in F'[z].

(3 = 1) Note that F'[z|/A is a commutative ring. Thus to show that it is a field, it suffices to show that
every nonzero element of F'[x]/A has an inverse. Let f(z) + A # 0+ A with f(z) € F|[z]. Then

f(z) ¢ A and hence h(x) } f(x). Since h(z) is irreducible and h(x) { f(z), we have

ged(f(z), h(x)) = 1. By Prop 10.6, there exist u(x), v(z) € F|z] such that 1 = u(z)h(z) + v(z) f(x).
Thus (v(z) + A)(f(z) + A) = 1 + A (since h(x) € A). It follows that f(x) + A has an inverse in
F[z]/A and hence F[z]/A is a field. O

Since R[z]/(z? 4+ 1) = C, which is a field, the polynomial 22 + 1 is irreducible in R[z].
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Since 2 + z + 1 has no root in Z, (since 0 and 1 are not roots), it is irreducible in Z,[z]. Thus
Zylz)/(z* +x+1) ={a+bt|abeZ,and t* +t+ 1 =0} is a field of 4 elements.

Remark

Before the previous example, the only finite fields we know are of the form Z,, where p is a
prime. We have seen before that there are infinitely many irreducible polynomials in Z,[z]. One
can show that for any n € N, there exists at least one irreducible polynomial of degree n in
Z,[z], say f, (). Since f,, () is irreducible, Z,[z]/{f,, (z)) is a field of order p™. Note that Z,,. is
NOT a field if n > 2.

Analogies Between Z and F'[x

Z F[x]

elements m f(z)

size |m| = absolute value deg f
units +1;Z\ {0}/{£1}' ="N F*, Flx]\ {0}/F*" =

"{monic polynomials}

unique factorization | m = +1p;"*---p%~, p, prime f=clitdor ce F* l, =L,(t) =
monic, irreducible

ideals (n)(unique if n € N) (h(x))

(unique if hA(z) monic)

ideals Z/{n) is a field iff n is a prime Flz]/(h(z)) is a field iff

h(zx) is irreducible

10.3 Fermat’s Last Theorem in F'[x]

The Pythagorean Theorem
We have 22 + y? = 22. The triples (x,y, z) = (3,4,5) and (5, 12, 13) are positive integer solutions.

Proposition 10.12 Euclid’s Formula
For a,b € N with a > b, we can take
z=a?—b% y=2ab, z=a%+0b?

Then the triple (z, y, ) satisfies 22 + y2 + 22 and we have infinitely many positive integer
solutions.

Question: How about positive integer solutions for

" +y"+2" withneNandn >3
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Theorem 10.13 Fermat’s Last Theorem
For n € N with n > 3, the equation 2™ + y™ = 2™ has no solution with z,y, z € N.
« The result was first claimed by Fermat in the mid 17** century without proof

+ The theorem was proved by Wiles and others in 1994
« The proof involves the use of elliptic curves, modular forms and Galois representations

Let F be a field and n € N. Consider
f@)" +g(z)" = h(z)"
with f(z), g(x), h(x) € F|x]. We say a solution (f, g, h) is non-trivial if deg(f), deg(g), deg(h) > 1.

Theorem 10.14

Let F be a field with ch(F') = 0. For n € N with n > 3, there is no non-trivial solutions to the
equation

f(@)" +g(z)" = h(z)"

with f(z), g(z), h(z) € F[x].

Proof: Suppose we have a non-trivial solution f™ + g™ = h"™. By dividing all common divisors of
f, 9, h, we can assume (f, g, h) is “coprime”, i.e. ged(f, g) = ged(f, h) = ged(g, h) = 1. Without loss of
generality, suppose

deg f =degh > degg
Write f* =df/dx. Since f™ 4+ g" = h™, by the chain rule, we have
nf*lf +ng" g =nh"1n.
Since ch(F') = 0, we have n - 1 # 0. By multiplying both sides by h we get
PN R4 g g h = frR 4 gnh
= "N f'h—f1') = g"" (gh' — g'h)
Since f and g are coprime, the above equation implies that f*~! | (g’ — g’h). Thus
(n—1)deg f < degg+degh—1
Since deg f = deg h > deg g, we have
(n—2)degg < (n—2)deg f < degg—1

which is a contradiction if n > 3. ]
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Note
Let p be a prime and consider Z,, [z]. We have

(f+9P=F"+g"

Let h = f + g. Then the equation fP + gP = h? has infinitely many non-trivial solutions.

Theorem 10.15
Let F be a field with ch(F') = p. For n € N with n > 3 and ged(n, p) = 1, there is no non-trivial

solutions for

fn+gn:hn

with f,g,h € F|x].

10.4 Prime Number Theorem and Riemann Hypothesis in Z[t]
Define 7(z) = #{p < z | p prime}
Conjecture:

m(x) ~liz = — ~

Hence the probability of primes < x is loéw. For example, about 1% of n € N with n < 199 are primes.

For s € C, the Riemann zeta function is defined to be

C(S):Z%: 11 (1+%+p28+...): 11 <1_]%)—1

neN p prime p prime

« Absolutely convergent for Re(s) > 1
+ Functional equation: relate ((s) with (1 — s)
+ Analytic continuation: extend ((s) to s € C

Riemann Hypothesis:

All “non-trivial zeros” of {(s) lie on Re(s) = 1

For any n € N, we have

m(z) =li(z) + O ( (logxx)” )

Prime Number Theorem and Riemann Hypothesis
inZ,[t]

Theorem 10.16 Prime Number Theorem
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For any € > 0, assuming RH,

n(z) = li(z) + O(z7+)

Let’s consider the Prime Number Theorem in Z,[t]. For f € Z,[t], define | f| = p!*¢/. For s € C, the

zeta function in Z,,[t] is defined to be

o= 2 = I (“\z%)

£ monic

irreducible
Note that
#{f | f monic, deg f = d} = p*
So
0 d
P 1
C (5) = 5 — _
p ; (p?) 1—pl—s

« Functional equation: relate (,(s) with ¢, (1 — s)
« Analytic continuation: extend (,(s) to s € C

Define a; = #{¢ | £ monic, irreducible, deg ¢ = d}. Then we have

Write T' = p~°. Then

1 > —a,
G = g =110 -17)

=1

Note that by taking logarithmic derivative,

log ! =L
1—pT 1—pT

By taking logarithmic derivatives and multiplying by T', we have

pT . > dade

1—pI' 4=1-T1

By expanding both sides into power series and comparing the coefficients of 7", we have,

p" = Z day (%)
d|n

Prime Number Theorem and Riemann Hypothesis
inZ,[t]

Theorem 10.17 Prime Number Theorem with RH
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Now define the Mobius functionon d € N

1 iftd=1
pu(d) =< (=1)7 if d is a product of distinct r primes
0 otherwise
Proposition 10.18 Mobius inversion formula

£n) = 32 g(d) = gm) = Y @£ (5)
d|n d|n

By (%) and the Mobius inversion formula, we have

day = p? + O(p%>

. $
ad:%w(%)

Define 7, (z) = #{¢ | £ monic, irreducible, |¢| < z} By the estimates of a,

i.e.

P
__pr =z 14
ﬂ—p(x)_p_l loga:+0<x2 E)
Which is RH in Z,[t]
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