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1 Topological Spaces and Continuous Maps

1.1 Elementary Topology

Given an inner product on an ℝ-vector space ⟨⋅, ⋅⟩, one can define a norm ‖𝑥‖ = √⟨𝑥, 𝑥⟩. Given a 

norm, one can define a metric 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖. Given a metric 𝑑 on a set 𝑋, one can define open sets 

in 𝑋:

given 𝑎 ∈ 𝑋 and 𝑟 > 0, 𝐵(𝑎, 𝑟) ≔ {𝑥 ∈ 𝑋 | 𝑑(𝑥, 𝑎) < 𝑟}. Then for 𝐴 ⊆ 𝑋, we say 𝐴 is open in 𝑋 

when ∀𝑎 ∈ 𝐴∃𝑟 > 0 such that 𝐵(𝑎, 𝑟) ⊆ 𝐴. Equivalently, for all 𝑎 ∈ 𝐴, there is 𝑏 ∈ 𝑋, 𝑟 > 0 such that 

𝑎 ∈ 𝐵(𝑏, 𝑟) ⊆ 𝐴.

Remark

The set of open sets on a metric space is called the metric topology on 𝑋.

Open sets in a metric space satisfy the following:

1. ∅ and 𝑋 are open

2. arbitrary unions of open sets are open

3. finite intersections of open sets are open

Notation

For a set of sets 𝑆, the union of 𝑆 is

⋃ 𝑆 ≔ {𝑥 | ∃𝐴 ∈ 𝑆, 𝑥 ∈ 𝐴} = ⋃
𝐴∈𝑆

𝐴

In the case that 𝑆 ≠ ∅, the intersection of 𝑆 is

⋂ 𝑆 ≔ {𝑥 | ∀𝐴 ∈ 𝑆, 𝑥 ∈ 𝐴} = ⋂
𝐴∈𝑆

𝐴

Note

⋂ 𝑆 would contain all elements as the condition ∀𝐴 ∈ ∅ would be vacuously satisfied. If we are 

given a universal set 𝑋, and 𝑆 is known to be a set of subsets of 𝑋, then ⋂ ∅ = 𝑋.

Definition 1.1

Let 𝑋 be a set. 𝒯︀ ⊆ 𝒫︀(𝑋) is called a topology on 𝑋 if

1. ∅, 𝑋 ∈ 𝒯︀
2. If 𝑆 ⊆ 𝒯︀ is nonempty, then ⋃ 𝑆 ∈ 𝒯︀
3. If 𝑆 ⊆ 𝒯︀ is nonempty and finite, then ⋂ 𝑆 ∈ 𝒯︀

The elements of 𝒯︀ are called the open sets of 𝑋. The closed sets are the compliments of the open 

sets.

Elementary Topology 2
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Remark

To show 3 holds, it suffices to show the intersection of 2 open sets is open (by induction)

Definition 1.2

If 𝑋 is a set, and 𝒯︀ is a topology on 𝑋, then (𝑋, 𝒯︀) is called a topological space

Remark

When 𝑓 : 𝑋 → 𝑌  is a map between metric spaces, 𝑓  is continuous iff 𝑓−1(𝑉 ) is open in 𝑋 for 

every open set 𝑉 ⊆ 𝑌 .

Definition 1.3

For a map 𝑓 : 𝑋 → 𝑌  between topological spaces, we say that 𝑓  is continuous when 𝑓−1(𝑉 ) is 

open in 𝑋 for every open set 𝑉 ⊆ 𝑌 .

Example 1.1

if 𝑓 : 𝐴 ⊆ ℝ𝑛 ⟶ 𝐵 ⊆ ℝ𝑚 is an elementary function, then 𝑓  is continuous.

Definition 1.4

When 𝑆, 𝑇  are topologies on 𝑋 with 𝑆 ⊆ 𝑇 , we say that 𝑆 is coarser than 𝑇  and 𝑇  is finer than 

𝑆. When 𝑆 ⊊ 𝑇 , we use strictly coarser/finer.

Example 1.2

{∅, 𝑋} is a topology on 𝑋 called the trivial topology

Example 1.3

𝒫︀(𝑋) is a topology on 𝑋 called the discrete topology

Example 1.4

When 𝑋 = ∅, 𝒯︀ ⊆ 𝒫︀(𝑋) ⇒ 𝒯︀ ⊆ {∅} ⇒ 𝒯︀ = ∅ ∨ 𝒯︀ = {∅}. Thus the only topology on ∅ is {∅}.

Example 1.5

When 𝑋 = {𝑎} the only topology is 𝒯︀ = {∅, {𝑎}}

Exercise 1.1.1

Find all topologies on the 2 and 3 element sets.

Elementary Topology 3
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Definition 1.5

Let 𝑋 be a topological space. Let 𝐴 ⊆ 𝑋.

1. The interior of 𝐴 (in 𝑋) denoted by int(𝐴) is the union of all open sets in 𝑋 which are 

contained in 𝐴.

2. The closure of 𝐴 denoted 𝐴 is the intersection of all closed sets in 𝑋 which contain 𝐴.

3. The boundary of 𝐴, denoted by 𝜕𝐴, given by 𝜕𝐴 = 𝐴 ∖ int(𝐴)

Note

The set of closed sets in a topological space is closed under arbitrary intersections and under 

finite unions. In particular ∅, 𝑋 are closed

Theorem 1.1

Let 𝑋 be a topological space, 𝐴 ⊆ 𝑋.

1. int(𝐴) is open, and is the largest open set which is contained in 𝐴
2. 𝐴 is closed, and is the smallest closed set which contains 𝐴
3. 𝐴 is open iff 𝐴 = int(𝐴)
4. A is closed iff 𝐴 = 𝐴
5. int(int(𝐴)) = int(𝐴)
6. 𝐴 = 𝐴

Definition 1.6

Let 𝑋 be a topological space, let 𝐴 ⊆ 𝑋, let 𝑎 ∈ 𝑋.

1. We say that 𝑎 is an interior point of 𝐴 when 𝑎 ∈ 𝐴 and there is an open set 𝑈  such that 

𝑎 ∈ 𝑈 ⊆ 𝐴
2. We say that 𝑎 is a limit point of 𝐴 when for every open set 𝑈 ∋ 𝑎 we have 

𝑈 ∩ (𝐴 ∖ {𝑎}) ≠ ∅. The set of limit points of 𝐴 is denoted by 𝐴′

3. We say that 𝑎 is a boundary point of 𝐴 when every open set 𝑈 ∋ 𝑎, we have 𝑈 ∩ 𝐴 ≠ ∅ 

and 𝑈 ∩ 𝐴𝑐 ≠ ∅

Elementary Topology 4
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Theorem 1.2

Let 𝑋 be a topological space and let 𝐴 ⊆ 𝑋.

1. int(𝐴) is equal to the set of all interior points

2. For 𝑎 ∈ 𝑋,

𝑎 ∈ 𝐴′ ⟺ 𝑎 ∈ 𝐴 ∖ {𝑎}
3. 𝐴 is closed iff 𝐴′ ⊆ 𝐴
4. 𝐴 = 𝐴 ∪ 𝐴′

5. 𝐴 is the disjoint union

𝐴 = int(𝐴) ⊔ 𝜕𝐴
6. 𝜕𝐴 is equal to the set of boundary points of 𝐴

1.2 Topological Bases

Theorem 1.3

Let 𝑋 be a set. Then the intersection of any set of topologies on 𝑋 is also a topology on 𝑋.

Proof: Let {𝒯︀𝛼}𝛼∈𝐼  be a collection of topologies on 𝑋. Let 𝒯︀ = ⋂𝛼 𝒯︀𝛼
1. Since 𝑋, ∅ ∈ 𝒯︀𝛼 for all 𝛼 ∈ 𝐼 . We have 𝑋, ∅ ∈ 𝒯︀
2. Let {𝑈𝑖} ⊆ 𝒯︀. For all 𝛼 ∈ 𝐼 , we have each 𝑈𝑖 ∈ 𝒯︀𝛼. Thus ⋃𝑖 𝑈𝑖 ∈ 𝒯︀𝛼 ⟹ ⋃𝑖 𝑈𝑖 ∈ 𝒯︀ as desired.

3. Let 𝑈1, …, 𝑈𝑛 ∈ 𝒯︀. Then again for all 𝛼 ∈ 𝐼 , we have each 𝑈𝑖 ∈ 𝒯︀𝛼. Thus 

⋂𝑛
𝑖=1 𝑈𝑖 ∈ 𝒯︀𝛼 ⟹ ⋂𝑛

𝑖=1 𝑈𝑖 ∈ 𝒯︀

☐

Corollary 1.4

When 𝑋 is a set and 𝒮︀ is any set of subsets of 𝑋 (that is 𝑆 ⊆ 𝒫︀(𝑋)), there is a unique smallest 

(coarsest) topology 𝒯︀ on 𝑋 which contains 𝒮︀. Indeed 𝒯︀ is the intersection of (the set of) all 

topologies on 𝑋 containing 𝒮︀.

This topology 𝒯︀ is called the topology on 𝑋 generated by 𝒮︀

Definition 1.7

Let 𝑋 be a set. A basis of sets on 𝑋 is a set ℬ︀ of subsets of 𝑋 (So ℬ︀ ⊆ 𝒫︀(𝑋)) such that

1. ℬ︀ covers 𝑋, that is ⋃ ℬ︀ = 𝑋
2. For every 𝐶, 𝐷 ∈ ℬ︀ and 𝑎 ∈ 𝐶 ∩ 𝐷. There is 𝐵 ∈ ℬ︀ such that 𝑎 ∈ 𝐵 ⊆ 𝐶 ∩ 𝐷.

When ℬ︀ is a basis of sets in 𝑋 and 𝒯︀ is the topology on 𝑋 generated by ℬ︀, we say that ℬ︀ is a 

basis for 𝒯︀. The elements in ℬ︀ are called basic open sets in 𝑋.

Topological Bases 5
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Theorem 1.5 Characterization of Open Sets in Terms of Basic Open Sets

Let 𝑋 be a topological space, Let ℬ︀ be a basis for the topology on 𝑋.

1. For 𝐴 ⊆ 𝑋, 𝐴 is open iff for every 𝑎 ∈ 𝐴, there is 𝐵 ∈ ℬ︀ such that 𝑎 ∈ 𝐵 ⊆ 𝐴 *

2. The open sets in 𝑋 are the unions of (sets of) elements in ℬ︀

Equivalently,

1. 𝒯︀ = {𝐴 ⊆ 𝑋 | ∀𝑎 ∈ 𝐴, ∃𝐵 ∈ ℬ︀ 𝑎 ∈ 𝐵 ⊆ 𝐴}
2. 𝒯︀ = {⋃ 𝐶 | 𝐶 ⊆ ℬ︀}

Proof: Let 𝒯︀ be the topology on 𝑋 (generated by ℬ︀). Let 𝒮︀ be the set of all sets 𝐴 ⊆ 𝑋 with property * 

(∀𝑎 ∈ 𝐴∃𝐵 ∈ ℬ︀ : 𝑎 ∈ 𝐵 ⊆ 𝐴). And let ℛ︀ be the set of (arbitrary) unions of (sets of) elements in ℬ︀. 

Recall that 𝒯︀ is the intersection of the set of all topologies on 𝑋 which contain ℬ︀. Note that 𝒮︀ contains 

ℬ︀ (obviously). Let us show that 𝒮︀ is a topology on 𝑋. We have ∅ ∈ 𝒮︀ vacuously and 𝑋 ∈ 𝒮︀ because ℬ︀ 

covers 𝑋 (given 𝑎 ∈ 𝑋, we can choose 𝐵 ∈ ℬ︀ with 𝑎 ∈ 𝐵). When 𝑈𝑘 ∈ 𝑆 for every 𝑘 ∈ 𝐾 (where 𝐾 is 

any index set). Let 𝑎 ∈ ⋃𝑘 𝑈𝑘. Choose ℓ ∈ 𝐾 so that 𝑎 ∈ 𝑈ℓ. Since 𝑈ℓ ∈ 𝒮︀, we can choose 𝐵 ∈ ℬ︀ so 

that 𝑎 ∈ 𝐵 ⊆ 𝑈ℓ. Since 𝑈ℓ ⊆ ⋃𝑘 𝑈𝑘, we have 𝑎 ∈ 𝐵 ⊆ ⋃𝑘 𝑈𝑘. Thus ⋃𝑘 𝑈𝑘 satisfies *, hence ⋃𝑘 𝑈𝑘 ∈ 𝒮︀ 

as required. Suppose 𝑈, 𝑉 ∈ 𝒮︀ Let 𝑎 ∈ 𝑈 ∩ 𝑉 . Since 𝑈 ∈ 𝒮︀ we can choose 𝐶 ∈ ℬ︀ with 𝑎 ∈ 𝐶 ⊆ 𝑈 . 

Since 𝑉 ∈ 𝒮︀, we can choose 𝐷 ∈ ℬ︀ with 𝑎 ∈ 𝐷 ⊆ 𝑉 . Since ℬ︀ is a basis, 𝐶, 𝐷 ∈ ℬ︀ and 𝑎 ∈ 𝐶 ∩ 𝐷, we 

can choose 𝐵 ∈ ℬ︀ with 𝑎 ∈ 𝐵 ⊆ 𝐶 ∩ 𝐷. Then we have

𝑎 ∈ 𝐵 ⊆ 𝐶 ∩ 𝐷 ⊆ 𝑈 ∩ 𝑉

Thus 𝑈 ∩ 𝑉  satisfies * so that 𝑈 ∩ 𝑉 ∈ 𝒮︀ as required. Thus 𝒮︀ is a topology on 𝑋 containing ℬ︀, hence 

𝒯︀ ⊆ 𝒮︀. Let us show that 𝒮︀ ⊆ ℛ︀ let 𝑈 ∈ 𝒮︀. For each 𝑎 ∈ 𝑈 , choose 𝐵𝑎 ∈ ℬ︀ with 𝑎 ∈ 𝐵𝑎 ⊆ 𝑈 . Then we 

have

𝑈 = ⋃
𝑎∈𝑈

𝐵𝑎 ∈ ℛ︀

Thus 𝒮︀ ⊆ ℛ︀. Finally note that ℛ︀ ⊆ 𝒯︀ because if 𝑈 = ⋃𝑘 𝐵𝑘 with 𝐵𝑘 ∈ ℬ︀, then each 𝐵𝑘 ∈ 𝒯︀, and 𝒯︀ is 

a topology, so

𝑈 = ⋃
𝑘∈𝐾

𝐵𝑘 ∈ 𝒯︀

☐

Theorem 1.6 Characterization of a Basis in terms of the Open Sets

Let 𝑋 be a topological space with topology 𝒯︀. Let ℬ︀ ⊆ 𝒯︀. Then ℬ︀ is a basis for 𝒯︀ iff 

∀𝑈 ∈ 𝒯︀∀𝑎 ∈ 𝑈∃𝐵 ∈ ℬ︀ 𝑎 ∈ 𝐵 ⊆ 𝑈 . *

Proof: If ℬ︀ is a basis for 𝒯︀, then * holds by part 1 of the previous theorem. Suppose * holds. Let us show 

that ℬ︀ is a basis of sets in 𝑋. Note that ℬ︀ covers 𝑋 since, taking 𝑈 = 𝑋 in * we have 

∀𝑎 ∈ 𝑋∃𝐵 ∈ ℬ︀ 𝑎 ∈ 𝐵 ⊆ 𝑋. Also note that given 𝐶, 𝐷 ∈ ℬ︀ and 𝑎 ∈ 𝐶 ∩ 𝐷, then by taking 

𝑈 = 𝐶 ∩ 𝐷 in * (noting that 𝐶, 𝐷 ∈ ℬ︀ ⊆ 𝒯︀ so that 𝑈 = 𝐶 ∩ 𝐷 ∈ 𝒯︀) we can choose 𝐵 ∈ ℬ︀ with 

𝑎 ∈ 𝐵 ⊆ 𝐶 ∩ 𝐷. Thus ℬ︀ is a basis of sets in 𝑋. It remains to show that 𝒯︀ is the topology generated by 

ℬ︀. Let 𝒮︀ be the topology generated by ℬ︀. By part 1 of the previous theorem, 𝑆 is the set of all unions of 

Topological Bases 6
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elements in ℬ︀. Also 𝒮︀ is the smallest topology which contains ℬ︀. Since ℬ︀ ⊆ 𝒯︀ and 𝒯︀ is a topology, we 

have 𝒮︀ ⊆ 𝒯︀. Also we have 𝒯︀ ⊆ 𝒮︀ because given 𝑈 ∈ 𝒯︀, by property *, for each 𝑎 ∈ 𝑈 , we can choose 

𝐵𝑎 ∈ ℬ︀ with 𝑎 ∈ 𝐵𝑎 ⊆ 𝑈 , and then we have 𝑈 = ⋃𝑎∈𝑈 𝐵𝑎 ∈ 𝒮︀ since it is a union of elements in ℬ︀ ☐

Example 1.6

When 𝑋 is a metric space, the set ℬ︀ of all open balls in 𝑋 is a basis for the metric topology on 

𝑋.

Remark

We can use a basis for testing various topological properties:

When 𝑋 is a topological space, and ℬ︀ is a basis for the topology on 𝑋, and 𝐴 ⊆ 𝑋 and 𝑎 ∈ 𝑋. 

Then

𝑎 ∈ int(𝐴) ⟺ ∃𝐵 ∈ ℬ︀ with 𝑎 ∈ 𝐵 ⊆ 𝐴

𝑎 ∈ 𝐴 ⟺ ∀𝐵 ∈ ℬ︀ with 𝑎 ∈ 𝐵 𝐵 ∩ 𝐴 ≠ ∅
𝑎 ∈ 𝐴′ ⟺ ∀𝐵 ∈ ℬ︀ with 𝑎 ∈ 𝐵 (𝐵 ∖ {𝑎}) ∩ 𝐴 ≠ ∅
𝑎 ∈ 𝜕𝐴 ⟺ ∀𝐵 ∈ ℬ︀ with 𝑎 ∈ 𝐵 𝐵 ∩ 𝐴 ≠ ∅ and 𝐵 ∩ (𝑋 ∖ 𝐴) ≠ ∅

Definition 1.8

A topological space 𝑋 is called Hausdorff when for all 𝑎, 𝑏 ∈ 𝑋 with 𝑎 ≠ 𝑏, there exist disjoint 

open sets 𝑈  and 𝑉  in 𝑋 with 𝑎 ∈ 𝑈  and 𝑏 ∈ 𝑉 .

Example 1.7

Metric spaces are Hausdorff

Topological Bases 7
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1.3 Subspaces

Definition 1.9 Subspace Topology

Let 𝑌  be a topological space with topology 𝒮︀, and 𝑋 ⊆ 𝑌  be a subset. Let

𝒯︀ ≔ {𝑉 ∩ 𝑋 | 𝑉 ∈ 𝒮︀}

Then 𝒯︀ is a topology on 𝑋:

Indeed ∅ ∈ 𝒮︀ so ∅ ∩ 𝑋 = ∅ ∈ 𝒯︀ and 𝑌 ∈ 𝒮︀ so 𝑌 ∩ 𝑋 = 𝑋 ∈ 𝒯︀. If 𝐾 is any index set and 

𝑈𝑘 ∈ 𝒯︀ for each 𝑘 ∈ 𝐾 , then for each 𝑘 ∈ 𝐾 we can choose 𝑉𝑘 ∈ 𝒮︀ such that 𝑈𝑘 = 𝑉𝑘 ∩ 𝑋 and 

then we have

⋃
𝑘∈𝐾

𝑈𝑘 = ⋃
𝑘∈𝐾

(𝑉𝑘 ∩ 𝑋)

= ( ⋃
𝑘∈𝐾

𝑉𝑘) ∩ 𝑋 ∈ 𝒯︀

since ⋃𝑘∈𝐾 𝑉𝑘 ∈ 𝒮︀. Similarly, when 𝐾 is finite and 𝑈𝑘 ∈ 𝒯︀ for each 𝑘 ∈ 𝐾 we have 

⋂𝑘∈𝐾 𝑈𝑘 ∈ 𝒯︀ The topology 𝒯︀ on 𝑋 is called the subspace topology on 𝑋 (inherited from the 

topology on 𝑌 ).

Theorem 1.7

Let 𝑌  be a topological space, let 𝒞︀ be a basis for the topology on 𝑌 . Let 𝑋 ⊆ 𝑌  be a subset. Then 

the set

ℬ︀ = {𝐶 ∩ 𝑋 | 𝐶 ∈ 𝒞︀}

is a basis for the subspace topology on 𝑋.

Proof: Exercise ☐

Theorem 1.8

Let 𝑍 be a topological space, let 𝑌 ⊆ 𝑍 be a subspace and 𝑋 ⊆ 𝑌  be a subset. Then the subspace 

topology on 𝑋 inherited from 𝑌  is equal to the subspace topology on 𝑋 inherited from 𝑍 .

Proof: Exercise ☐

Theorem 1.9

Let 𝑌  be a metric space, (using the metric topology) and let 𝑋 ⊆ 𝑌 . Then the subspace topology 

on 𝑋 (inherited from the topology on 𝑌 ) is equal to the metric topology on 𝑋 using the metric 

on 𝑋 obtained by restricting the metric on 𝑌 .

Proof: Exercise ☐

Subspaces 8
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1.4 Continuous Maps

Definition 1.10

Let 𝑋, 𝑌  be topological spaces.

1. For 𝑓 : 𝑋 → 𝑌  and 𝑎 ∈ 𝑋, we say that 𝑓  is continuous at 𝑎 when for every open set 𝑉 ⊆ 𝑌  

with 𝑓(𝑎) ∈ 𝑉 , there exists an open set 𝑈 ⊆ 𝑋 with 𝑎 ∈ 𝑈 ⊆ 𝑓−1(𝑉 ).
2. We say that 𝑓  is continuous (in or on 𝑋) when for every open set 𝑉 ⊆ 𝑌 , 𝑓−1(𝑉 ) is open in 

𝑋.

3. A homeomorphism from 𝑋 to 𝑌  is is a bijective map 𝑓 : 𝑋 → 𝑌  such that both 𝑓  and its 

inverse 𝑓−1 : 𝑌 → 𝑋 are continuous. We say that 𝑋 and 𝑌  are homeomorphic, and we 

write 𝑋 ≅ 𝑌 , when there exists a homeomorphism 𝑓 : 𝑋 → 𝑌 . (and we remark that 

𝑓−1 : 𝑌 → 𝑋 is also a homeomorphism).

Theorem 1.10

Constant maps and inclusion maps are continuous.

Proof: For 𝑓 : 𝑋 → 𝑌  given by 𝑓(𝑥) = 𝑐 ∈ 𝑌  for all 𝑥 ∈ 𝑋. When 𝑉  is open in 𝑌 ,

𝑓−1(𝑉 ) = {𝑋 if 𝑐 ∈ 𝑉
∅ if 𝑐 ∉ 𝑉

When 𝑋 ⊆ 𝑌  is a subspace and 𝑓 : 𝑋 → 𝑌  is given by 𝑓(𝑥) = 𝑥 for all 𝑥 ∈ 𝑋, when 𝑉  is open in 𝑌 .

𝑓−1(𝑉 ) = {𝑥 ∈ 𝑋 | 𝑓(𝑥) ∈ 𝑉 }
= {𝑥 ∈ 𝑋 | 𝑥 ∈ 𝑉 }
= 𝑉 ∩ 𝑋

which is open in 𝑋. (when 𝑋 uses the subspace topology) ☐

Remark

When 𝑌  is a topological space and 𝑋 ⊆ 𝑌  we shall assume, unless otherwise noted, that 𝑋 uses 

the subspace topology.

Theorem 1.11 Equivalent Definitions of Continuity

Let 𝑓 : 𝑋 → 𝑌  be a map between topological spaces

1. 𝑓  is continuous iff 𝑓  is continuous at every 𝑎 ∈ 𝑋
2. 𝑓  is continuous iff for every closed set 𝐾 ⊆ 𝑌 , 𝑓−1(𝐾) is closed in 𝑋.

3. If 𝒞︀ is a basis for the topology on 𝑌  then 𝑓  is continuous iff for every 𝐶 ∈ 𝒞︀, 𝑓−1(𝐶) is 

open in 𝑋.

Proof of 1: Suppose 𝑓  is continuous on 𝑋. Let 𝑎 ∈ 𝑋. Let 𝑉  be an open set in 𝑌  with 𝑓(𝑎) ∈ 𝑉 . Let 

𝑈 = 𝑓−1(𝑉 ), then 𝑓−1(𝑉 ) is open, since 𝑓  is continuous and 𝑎 ∈ 𝑈 ⊆ 𝑓−1(𝑉 ). Suppose, conversely, 

that 𝑓  is continuous at every 𝑎 ∈ 𝑋. Let 𝑉  be an open set in 𝑌 . For each 𝑎 ∈ 𝑓−1(𝑉 ) since 𝑓  is 

continuous at 𝑎 with 𝑓(𝑎) ∈ 𝑉 , we can choose an open set 𝑈𝑎 in 𝑋 with 𝑎 ∈ 𝑈𝑎 ⊆ 𝑓−1(𝑉 ). Then

Continuous Maps 9
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𝑓−1(𝑉 ) = ⋃
𝑎∈𝑓−1(𝑉 )

𝑈𝑎

which is open in 𝑋, since it is a union in open sets in 𝑋. ☐

Theorem 1.12

Let 𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑌 → 𝑍 be continuous maps between topological spaces, then the composite 

map ℎ = 𝑔 ∘ 𝑓 : 𝑋 → 𝑍 is continuous.

Proof: Show that ℎ−1(𝑊) = 𝑓−1(𝑔−1(𝑊)) ☐

Remark

Homeomorphism of topological spaces behaves like an equivalence relation on the class of all 

topological spaces. For topological spaces 𝑋, 𝑌 , 𝑍
1. 𝑋 ≅ 𝑋 (since id𝑋 is a homeomorphism – a special case of the inclusion map)

2. If 𝑋 ≅ 𝑌  then 𝑌 ≅ 𝑋 (when 𝑓 : 𝑋 → 𝑌  is a homeomorphism, so is 𝑓−1 : 𝑌 → 𝑋)

3. If 𝑋 ≅ 𝑌 ≅ 𝑍 then 𝑋 ≅ 𝑍 (if 𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑌 → 𝑍 are homeomorphisms then so is 

𝑔 ∘ 𝑓 )

Theorem 1.13 Restriction of Domain and Restriction or Expansion of Codomain

Let 𝑋, 𝑌 , 𝑍 be topological spaces. Suppose 𝑓 : 𝑋 → 𝑌  is continuous.

1. For any subspace 𝐴 ⊆ 𝑋, the restriction 𝑓|𝐴 : 𝐴 → 𝑌  is continuous.

2. If 𝑌 ⊆ 𝑍 is a subspace then 𝑓 : 𝑌 → 𝑍 is continuous and if 𝐵 ⊆ 𝑌  with 𝑓(𝑋) ⊆ 𝐵, then 

𝑓 : 𝑋 → 𝐵 is continuous.

Proof: Exercise ☐

Lemma 1.14 Glueing/Pasting Lemma

Let 𝑓 : 𝑋 → 𝑌  be a map between topological spaces

1. If 𝑋 = ⋃𝑘∈𝐾 𝑈𝑘 where each 𝑈𝑘 is open in 𝑋 and if each restriction map 𝑓|𝑈𝑘
: 𝑈𝑘 → 𝑌  is 

continuous (where 𝑈𝑘 is using the subspace topology), then 𝑓  is continuous.

2. If 𝑋 = 𝐶1 ∪ ⋯ ∪ 𝐶𝑛 where each 𝐶𝑘 is closed in 𝑋, and if each restriction 𝑓|𝐶𝑘
: 𝐶𝑘 → 𝑌  is 

continuous, then 𝑓  is continuous.

Proof of 1: Suppose 𝑋 = ⋃𝑘∈𝐾 𝑈𝑘 where each 𝑈𝑘 is open in 𝑋 and suppose each restriction 𝑓|𝑈𝑘
 is 

continuous. Let 𝑉 ⊆ 𝑌  be open. Note that

Continuous Maps 10
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𝑓−1(𝑉 ) = {𝑥 ∈ 𝑋 | 𝑓(𝑥) ∈ 𝑉 }

= ⋃
𝑘∈𝐾

{𝑥 ∈ 𝑈𝑘 | 𝑓(𝑥) ∈ 𝑉 }

= ⋃
𝑘∈𝐾

{𝑥 ∈ 𝑈𝑘 | 𝑓|𝑈𝑘
(𝑥) ∈ 𝑉 }

= ⋃
𝑘∈𝐾

𝑓|−1
𝑈𝑘

(𝑉 )

For each 𝑘 ∈ 𝐾 , since 𝑓|𝑈𝑘
 is continuous, we know that 𝑓|−1

𝑈𝑘
(𝑉 ) is open in 𝑈𝑘. Since 𝑈𝑘 is using the 

subspace topology, we can choose an open 𝑊𝑘 in 𝑋 such that 𝑓|−1
𝑈𝑘

(𝑉 ) = 𝑊𝑘 ∩ 𝑈𝑘. This is open in 𝑋 

since 𝑊𝑘 and 𝑈𝑘 are both open in 𝑋. Since 𝑓−1(𝑉 ) = ⋃𝑘∈𝐾 𝑓|−1
𝑈𝑘

(𝑉 ) it is a union of open sets in 𝑋, so 

it is open in 𝑋. Thus 𝑓  is continuous. ☐

Proof of 2: Exercise. First show that for 𝑓 : 𝑋 → 𝑌 , 𝑓  is continuous iff 𝑓−1(𝐶) is closed in 𝑋 for every 

closed set 𝐶 in 𝑌 . And, show that when 𝐴 ⊆ 𝑋 ⊆ 𝑌 , 𝐴 is closed in 𝑋 (using the subspace topology 

from 𝑌 ) iff 𝐴 = 𝐵 ∩ 𝑋 for some closed set 𝐵 in 𝑌 . ☐

Example 1.8

The map 𝑓 : ℝ → ℝ given by 𝑓(𝑥) = {2𝑥 𝑥≤0
𝑥2 𝑥>0 is continuous.

1.5 Examples of Homeomorphisms

Example 1.9

The circle

{(𝑥, 𝑦) ∈ ℝ2 | 𝑥2 + 𝑦2 = 1}

in ℝ2 is homeomorphic to the ellipse

{(𝑥, 𝑦) ∈ ℝ2 | (𝑥 − 𝑎)2

𝐴2 + (𝑦 − 𝑏)2

𝐵2 = 1}

in ℝ2

Example 1.10

ℝ ≅ (−1, 1) ⊆ ℝ

Examples of Homeomorphisms 11
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Example 1.11

The standard unit 𝑛-sphere in ℝ𝑛+1 is the set

𝕊𝑛 = {𝑥 ∈ ℝ𝑛+1 | ‖𝑥‖ = 1}

Where 𝑝 is the north pole

𝑝 = 𝑒𝑛+1 = (0, …, 0, 1) ∈ 𝕊𝑛

We have 𝕊𝑛 ∖ {𝑝} ≅ ℝ𝑛

2 Examples of Topological Spaces

Definition 2.1

Let 𝑋 be a set. We sometimes write 𝑋𝑡 to indicate that 𝑋 is using the trivial topology 

𝒯︀𝑡 = {∅, 𝑋}. We sometimes write 𝑋𝑑 to indicate 𝑋 is using the discrete topology 𝒯︀𝑑 = 𝒫︀(𝑋). 
We sometimes write 𝑋𝑐 to indicate 𝑋 is using the co-finite topology 

𝒯︀𝑐 = {𝐴 ⊆ 𝑋 | 𝐴 = ∅ or 𝑋 ∖ 𝐴 is finite}. Note the closed sets in 𝑋𝑐 are exactly the finite ones 

and 𝑋.

Definition 2.2

When 𝑋 is a metric space, we assume, unless otherwise indicated, that 𝑋 uses the metric 

topology. Sometimes, we might write 𝑋𝑚 to indicate that 𝑋 is using the metric topology 𝒯︀𝑚.

Definition 2.3

When 𝑌  is a topological space, and 𝑋 ⊆ 𝑌 , we assume, unless otherwise indicated, that 𝑋 uses 

the subspace topology. Sometimes, we might write 𝑋𝑠 to indicate that 𝑋 is using the subspace 

topology 𝒯︀𝑠. When 𝑋 ⊆ ℝ𝑛, we shall assume, unless otherwise indicated, that 𝑋 is using 

𝒯︀𝑚 = 𝒯︀𝑠

Examples of Topological Spaces 12
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Definition 2.4

Let 𝑋 be a set. A (strict, linear or total) order on 𝑋 is a binary relation < on 𝑋 such that

1. For all 𝑥, 𝑦 ∈ 𝑋 exactly one of the following holds:

a. 𝑥 < 𝑦
b. 𝑥 = 𝑦
c. 𝑦 < 𝑥

2. For all 𝑥, 𝑦, 𝑧 ∈ 𝑋, if 𝑥 < 𝑦 and 𝑦 < 𝑧 then 𝑥 < 𝑧

An ordered set is a set 𝑋 with an order <. When 𝑋 is an ordered set, we also define ≤, >, ≥ by 

stipulating that for all 𝑥, 𝑦 ∈ 𝑋

𝑥 ≤ 𝑦 ⟺ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦)
𝑥 > 𝑦 ⟺ 𝑦 < 𝑥
𝑥 ≥ 𝑦 ⟺ 𝑦 ≤ 𝑥

Remark

In an ordered set 𝑋 we can define an upper bound, a lower bound, the supremum, the infimum, 

the maximum, and the minimum of a subset 𝐴 ⊆ 𝑋.

Example 2.1

Let 𝑋 be an ordered set and 𝐴 ⊆ 𝑋, 𝑀 = max(𝐴) when 𝑀 ∈ 𝐴 with 𝑀 ≥ 𝑥 for all 𝑥 ∈ 𝐴. 

Similarly, 𝑚 for minimum.

Definition 2.5

When 𝑋 is an ordered set, we have the following subsets which are called intervals in 𝑋. For 

𝑎, 𝑏 ∈ 𝑋 with 𝑎 < 𝑏 we have

(𝑎, 𝑏) ≔ {𝑥 ∈ 𝑋 | 𝑎 < 𝑥 < 𝑏}
(𝑎, 𝑏] ≔ {𝑥 ∈ 𝑋 | 𝑎 < 𝑥 ≤ 𝑏}
[𝑎, 𝑏) ≔ {𝑥 ∈ 𝑋 | 𝑎 ≤ 𝑥 < 𝑏}
[𝑎, 𝑏] ≔ {𝑥 ∈ 𝑋 | 𝑎 ≤ 𝑥 ≤ 𝑏}

Definition 2.6

Let 𝑋 be an ordered set. The order topology on 𝑋 is the topology 𝒯︀𝑜 which is generated by the 

basis ℬ︀𝑜 of sets in 𝑋 which consist of the following intervals:

• (𝑎, 𝑏) where 𝑎, 𝑏 ∈ 𝑋, 𝑎 < 𝑏
• (𝑎, 𝑀] where 𝑀 = max 𝑋 and 𝑎 ∈ 𝑋 with 𝑎 ≠ 𝑀  (in the case that 𝑋 has a maximum)

• [𝑚, 𝑏) where 𝑚 = min 𝑋 and 𝑏 ∈ 𝑋 with 𝑏 ≠ 𝑚 (in the case that 𝑋 has a minimum)

We sometimes write 𝑋𝑜 to indicate that 𝑋 is using the order topology 𝒯︀𝑜

Examples of Topological Spaces 13
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Exercise 2.0.1

Verify ℬ︀𝑜 is a basis.

Example 2.2

ℝ = ℝ𝑜 = ℝ𝑚

Definition 2.7

Let 𝑋 be an ordered set the lower limit topology on 𝑋 is the topology 𝒯︀ℓ generated by the basis 

ℬ︀ℓ which consists of intervals of the form [𝑎, 𝑏) where 𝑎, 𝑏 ∈ 𝑋 with 𝑎 < 𝑏 we sometimes write 

𝑋ℓ to indicate that 𝑋 is using the lower limit topology.

Note

on ℝ, 𝒯︀ℓ is not equal to 𝒯︀𝑚. Note that when 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏,

(𝑎, 𝑏) = ⋃
∞

𝑛=𝑚
[𝑎 + 1

𝑛
, 𝑏) where 1

𝑚
< 𝑏 − 𝑎

which is open in ℝℓ. So we have 𝒯︀𝑜 ⊆ 𝒯︀ℓ

Example 2.3

Let 𝑋 = (0, 1) ∪ {2} ⊆ ℝ. Note that 𝒯︀𝑜 ≠ 𝒯︀𝑚 = 𝒯︀𝑠 on 𝑋. (Where 𝑋 uses the standard order 

inherited from ℝ). For example {2} is open in 𝑋𝑚. But is not open in 𝑋𝑜 because any open set in 

𝑋𝑜 which contains 2, must contain a basic open set 𝐵 with 2 ∈ 𝐵. So it must contain a set of the 

form

𝐵 = (𝑎, 2]𝑋 = (𝑎, 1) ∪ {2} where 𝑎 ∈ (0, 1)

So they include elements other than 2

Example 2.4

When 𝑋 is an ordered set, the dictionary (or lexicographic) order on 𝑋2 is given by

(𝑎, 𝑏) < (𝑐, 𝑑) ⟺ (𝑎 = 𝑐 and 𝑏 < 𝑑) or 𝑎 < 𝑐

Note that on ℝ2, the order topology 𝒯︀𝑜 is not equal to the standard metric topology 𝒯︀𝑚

2.1 Products of Topological Spaces

Definition 2.8

Let 𝑋, 𝑌  be sets, then the Cartesian product of 𝑋 and 𝑌  is

𝑋 × 𝑌 = {(𝑥, 𝑦) | 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 }

Products of Topological Spaces 14
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Definition 2.9

Let 𝐾 be a non-empty index set and let 𝑋𝑘 be a set for each 𝑘 ∈ 𝐾 . Then the Cartesian product 

of the (indexed set of) sets 𝑋𝑘, 𝑘 ∈ 𝐾

∏
𝑘∈𝐾

𝑋𝑘 = {𝑥 : 𝐾 → ⋃
𝑘∈𝐾

𝑋𝑘 | 𝑥(𝑘) ∈ 𝑋𝑘 for all 𝑘 ∈ 𝐾}

and we write 𝑥(𝑘) as 𝑥𝑘. In the case that 𝐾 = {1, …, 𝑛} we write

∏
𝑘∈𝐾

𝑋𝑘 = ∏
𝑛

𝑘=1
𝑋𝑘 = 𝑋1 × ⋯ × 𝑋𝑛

In the case that 𝐾 = ℤ+ we write

∏
𝑘∈𝐾

𝑋𝑘 = ∏
∞

𝑘=1
𝑋𝑘 = 𝑋1 × 𝑋2 × ⋯

In the case that 𝐾 = {1, …, 𝑛} and 𝑋𝑘 = 𝑋 for all 𝑘 ∈ 𝐾 , we also write

∏
𝑘∈𝐾

𝑋𝑘 = ∏
𝑘∈𝐾

𝑋 = 𝑋 × 𝑋 × ⋯ × 𝑋⏟
𝑛 times

= 𝑋𝑛

In the case that 𝐾 = ℤ+, and 𝑋𝑘 = 𝑋 for all 𝑘 ∈ 𝐾 , we also write

∏
𝑘∈𝐾

𝑋𝑘 = ∏
∞

𝑘=1
= 𝑋 × 𝑋 × ⋯ = 𝑋𝜔

In the case that 𝑋 is a vector space, we write

𝑋∞ = {𝑥 = (𝑥1, 𝑥2…) ∈ 𝑋𝜔 | 𝑥𝑘 = 0 for all but finitely many 𝑘 ∈ ℤ+}

In this case 𝑋∞ and 𝑋𝜔 are both vector spaces.

When 𝑋𝑘 is a set for each 𝑘 ∈ 𝐾 , for each ℓ ∈ 𝐾 we have the projection map

𝑝ℓ : ∏
𝑘∈𝐾

𝑋𝑘 → 𝑋ℓ

given by 𝑝ℓ(𝑥) = 𝑥ℓ = 𝑥(ℓ). For any set 𝑌 , a function 𝑓 : 𝑌 → ∏𝑘∈𝐾 𝑋𝑘 determines, and is 

determined by, its component functions

𝑓ℓ : 𝑌 → 𝑋ℓ

where 𝑓ℓ = 𝑝ℓ ∘ 𝑓  so 𝑓ℓ(𝑦) = 𝑓(𝑦)ℓ = 𝑓(𝑦)(ℓ)

Products of Topological Spaces 15
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Definition 2.10

When 𝑋𝑘 is a topological space for each 𝑘 ∈ 𝐾 , there are two commonly used topologies on 

∏𝑘∈𝐾 𝑋𝑘.

1. The box topology on ∏𝑘∈𝐾 𝑋𝑘 is the topology generated by the basis of sets of the form

∏
𝑘∈𝐾

𝑈𝑘 ⊆ ∏
𝑘∈𝐾

𝑋𝑘

Where each 𝑈𝑘 is open in 𝑋𝑘
2. The product topology on ∏𝑘∈𝐾 𝑋𝑘 is the topology generated by the basis of sets consisting 

of the sets of the form ∏𝑘∈𝐾 𝑈𝑘 where each 𝑈𝑘 is open in 𝑋𝑘 with 𝑈𝑘 = 𝑋𝑘 for all but 

finitely many 𝑘 ∈ 𝐾 .

Note

The above two proposed bases are indeed bases of sets because

(∏
𝑘∈𝐾

𝑈𝑘) ∩ (∏
𝑘∈𝐾

𝑉𝑘) = ∏
𝑘∈𝐾

(𝑈𝑘 ∩ 𝑉𝑘)

Also note that when 𝐾 is finite, these two topologies are equal. When 𝐾 is infinite, the box 

topology is finer than the product topology.

Theorem 2.1

Let ℬ︀𝑘 be a basis for 𝑋𝑘 for each 𝑘 ∈ 𝐾 . Then the set of sets of the form

∏
𝑘∈𝐾

𝐵𝑘 where 𝐵𝑘 ∈ ℬ︀𝑘 for all 𝑘 ∈ 𝐾

is a basis for the box topology on ∏𝑘∈𝐾 𝑋𝑘, and the set of sets of the form

∏
𝑘∈𝐾

𝐵𝑘 where 𝐵𝑘 ∈ ℬ︀𝑘 ∪ {𝑋𝑘} for all 𝑘 ∈ 𝐾

with 𝐵𝑘 = 𝑋𝑘 for all but finitely many 𝑘 ∈ 𝐾 is a basis for the product topology on ∏𝑘∈𝐾 𝑋𝑘.

Proof: Exercise ☐

Theorem 2.2

For each 𝑘 ∈ 𝐾 , let 𝑋𝑘 be a subspace of 𝑌𝑘 (using the subspace topology). Then the box topology 

on ∏𝑘∈𝐾 𝑋𝑘 is equal to the subspace topology on ∏𝑘∈𝐾 𝑋𝑘 as a subspace of ∏𝑘∈𝐾 𝑌𝑘 using the 

box topology, and the product topology on ∏𝑘∈𝐾 𝑋𝑘 is equal to the subspace topology on 

∏𝑘∈𝐾 𝑋𝑘 as a subspace of ∏𝑘∈𝐾 𝑌𝑘 using the product topology.
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Theorem 2.3

Let 𝑌  be a topological space, and let 𝑋𝑘 be a topological space for each 𝑘 ∈ 𝐾 , and let 

𝑓 : 𝑌 → ∏𝑘∈𝐾 𝑋𝑘. Then when ∏𝑘∈𝐾 𝑋𝑘 uses the product topology, 𝑓  is continuous if and only 

if each component map 𝑓ℓ : 𝑌 → 𝑋ℓ is continuous.

Proof: Suppose that 𝑓  is continuous, then (using either the box or product topologies on ∏𝑘∈𝐾 𝑋𝑘) 

each projection map 𝑝ℓ : ∏𝑘∈𝐾 𝑋𝑘 → 𝑋ℓ is continuous because when 𝑈 ⊆ 𝑋ℓ is open,

𝑝−1
ℓ (𝑈) = {𝑥 ∈ ∏

𝑘∈𝐾
𝑋𝑘 | 𝑥ℓ = 𝑝ℓ(𝑥) ∈ 𝑈}

= ∏
𝑘∈𝐾

𝑈𝑘

where

𝑈𝑘 = {𝑈 if 𝑘 = ℓ
𝑋𝑘 if 𝑘 ≠ ℓ

which is open in ∏𝑘∈𝐾 𝑋𝑘 (using either the box or product topology) It follows that each component 

function 𝑓ℓ is continuous because

𝑓ℓ = 𝑝ℓ ∘ 𝑓

Suppose, conversely, that each component map

𝑓 = 𝑝ℓ ∘ 𝑓 : 𝑌 → ∏
𝑘∈𝐾

𝑋𝑘

is continuous, and that ∏𝑘∈𝐾 𝑋𝑘 is using the product topology. To show that 𝑓  is continuous, it suffices 

to show that 𝑓−1(𝐵) is open in 𝑌  for every basic open set 𝐵 in ∏𝑘∈𝐾 𝑋𝑘. Let 𝐵 be a basic open set (for 

the product topology) on ∏𝑘∈𝐾 𝑋𝑘. Say 𝐵 = ∏𝑘∈𝐾 𝑈𝑘 where each 𝑈𝑘 is open in 𝑋𝑘 with 𝑈𝑘 = 𝑋𝑘 for 

all but finitely many indices 𝑘 ∈ 𝐾 . Let 𝐿 ⊆ 𝐾 be the finite set of all indices 𝑘 ∈ 𝐾 for which 

𝑈𝑘 ≠ 𝑋𝑘. We have

𝑓−1(𝐵) = {𝑦 ∈ 𝑌 | 𝑓(𝑦) ∈ ∏
𝑘∈𝐾

𝑈𝑘}

= {𝑦 ∈ 𝑌 | 𝑓𝑘(𝑦) = 𝑓(𝑦)𝑘 ∈ 𝑈𝑘 for all 𝑘 ∈ 𝐾}
= {𝑦 ∈ 𝑌 | 𝑓𝑘(𝑦) ∈ 𝑈𝑘 for all 𝑘 ∈ 𝐿}

= ⋂
𝑘∈𝐿

𝑓−1
𝑘 (𝑈𝑘)

Which is open in 𝑌  since it is a finite intersection of open sets in 𝑌  (with 𝑓−1
𝑘 (𝑈𝑘)) is open in 𝑌  

because 𝑈𝑘 is open in 𝑋𝑘 and 𝑓𝑘 : 𝑌 → 𝑋𝑘 is continuous. ☐
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Remark

ℝ∞ ⊆ ℓ1 ⊆ ℓ𝑝 ⊆ ℓ𝑞 ⊆ ℓ∞ ⊆ ℝ𝜔

for 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞. Recall that these norms induce different topologies.

Question: do any of the 𝑝-norms induce the box or product topology on ℝ∞ ⊆ ℝ𝜔?

Question: is there a norm or metric on ℝ𝜔 which induces the box or product topology?

Remark

Also, we have the 𝑝-norms on ℝ𝑛. They all give the same topology on ℝ𝑛. More generally, when 

𝑋 is a finite dimensional vector space, all norms on 𝑋 induce the same topology on 𝑋. When 

𝐿 : 𝑋 → 𝑌  is a linear map between normed linear spaces, 𝐿 is continuous iff ‖𝐿‖op < ∞ iff 

𝐿(𝐵𝑋(0, 1)) is bounded in 𝑌 . And when 𝑋 is finite dimensional, 𝐵𝑋(0, 1) is compact and 

𝐿(𝐵𝑋(0, 1)) is bounded, so 𝐿 is continuous. In particular, when 𝑋 is finite dimensional and 

‖⋅‖1, ‖⋅‖2 are two norms on 𝑋,

id𝑋 : (𝑋, ‖⋅‖1) ⟶ (𝑋, ‖⋅‖2)

is continuous, and it is equal to its own inverse which is continuous, so id𝑋 is a 

homeomorphism, so for a set 𝑈 ⊆ 𝑋, 𝑈  is open in (𝑋, ‖⋅‖1) if and only if 𝑈  is open in (𝑋, ‖⋅‖2). 
Consequently, every finite dimensional vector space 𝑋 has a standard topology. (Pick a basis 

{𝑢1, …, 𝑢𝑛}, define

⟨∑ 𝑥𝑘𝑢𝑘, ∑ 𝑦𝑘𝑢𝑘⟩ = ∑ 𝑥𝑘𝑦𝑘 = 𝑥 ⋅ 𝑦

So the map 𝐿 : 𝑋 → ℝ𝑛 given by

𝐿(∑ 𝑥𝑘𝑢𝑘) = ∑ 𝑥𝑘𝑒𝑘 = 𝑥

is an inner product space isomorphism.) Then use the inner product to define a norm, a metric, 

and a topology. The resulting topology doesn’t depend on the choice of basis.

2.2 Quotient Spaces

Definition 2.11

Let 𝑋 be a set. Let ∼ be an equivalence relation on 𝑋. For 𝑎 ∈ 𝑋, the equivalence class of 𝑎 is

[𝑎] = {𝑥 ∈ 𝑋 | 𝑎 ∼ 𝑥}

Recall distinct equivalence classes are disjoint, and 𝑋 is the disjoint union of distinct equivalence 

classes. The set of all equivalence classes is denoted by 𝑋/∼ , is called the quotient set of 𝑋 by 

∼.

𝑋/∼ = {[𝑎] | 𝑎 ∈ 𝑋}

The map 𝑞 : 𝑋 → 𝑋/∼  given by 𝑥 ↦ [𝑥] is called the quotient map.

Quotient Spaces 18
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Definition 2.12

When 𝑋 is a topological space, the quotient topology on 𝑋/∼  is the topology obtained by 

stipulating that for 𝑉 ⊆ 𝑋/∼ , 𝑉  is open in 𝑋/∼  if and only if 𝑞−1(𝑉 ) is open in 𝑋.

Note

When 𝑉 ⊆ 𝑋/∼  so 𝑉  is a set of equivalence classes.

𝑞−1(𝑉 ) = {𝑥 ∈ 𝑋 | 𝑞(𝑥) ∈ 𝑉 }
= {𝑥 ∈ 𝑋 | [𝑥] ∈ 𝑉 }

= ⋃
[𝑥]∈𝑉

[𝑥]

= ⋃ 𝑉

Remark

For sets 𝑋 and 𝑌 ,

1. When 𝑌  is a topological space and 𝑋 ⊆ 𝑌  is a subset, the subspace topology is the coarsest 

topology on 𝑋 for which the inclusion map 𝑖 : 𝑋 → 𝑌  is continuous

𝑖−1(𝑉 ) = {𝑥 ∈ 𝑋 | 𝑖(𝑥) ∈ 𝑉 } = {𝑥 ∈ 𝑋 | 𝑥 ∈ 𝑉 } = 𝑉 ∩ 𝑋
2. When 𝑋 and 𝑌  are both topological spaces, the product topology on 𝑋 × 𝑌  is the coarsest 

topology for which the two projection maps 𝑝𝑋 : 𝑋 × 𝑌 → 𝑋, 𝑝𝑌 : 𝑋 × 𝑌 → 𝑌  are both 

continuous

𝑝−1
𝑋 (𝑈) = 𝑈 × 𝑌 𝑝−1

𝑌 (𝑉 ) = 𝑉 × 𝑋
3. When 𝑋 is a topological space and ∼ an equivalence relation on 𝑋, the quotient topology 

on 𝑋/∼  is the finest topology on 𝑋/∼  for which the quotient map 𝑞 : 𝑋 → 𝑋/∼  is 

continuous

Note

Let 𝑋 be a set and ∼ an equivalence relation on 𝑋. Note that any function 𝑔 : 𝑋/∼ → 𝑌  (where 

𝑌  is any set) determines and is determined by a function 𝑓 : 𝑋 → 𝑌  which is constant on 

equivalence classes (meaning that for 𝑥1, 𝑥2 ∈ 𝑋 if 𝑥1 ∼ 𝑥2 then 𝑓(𝑥1) = 𝑓(𝑥2)) with 𝑔 given 

by 𝑔([𝑥]) = 𝑓(𝑥) and with 𝑓  given by 𝑓 = 𝑔 ∘ 𝑞. So 𝑓(𝑥) = 𝑔(𝑞(𝑥)) = 𝑔([𝑥])

Theorem 2.4

Let 𝑋, 𝑌  be topological spaces. Let ∼ be an equivalence relation on 𝑋. Let 𝑓 : 𝑋/∼ → 𝑌 . Let 

𝑔 : 𝑋 → 𝑌  be the map given by 𝑔(𝑥) = 𝑓([𝑥]), that is 𝑔 = 𝑓 ∘ 𝑞. Then 𝑓  is continuous if and 

only if 𝑔 is continuous.
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Proof: If 𝑓  is continuous, then 𝑔 is continuous because 𝑔 = 𝑓 ∘ 𝑞 which is the composite of two 

continuous maps. Suppose that 𝑔 is continuous. Let 𝑉 ⊆ 𝑌 , be open. We need to show that 𝑓−1(𝑉 ) is 

open in 𝑋/∼ . By definition of the quotient topology

𝑓−1(𝑉 ) is open in 𝑋/∼ ⟺ 𝑞−1(𝑓−1(𝑉 )) is open in 𝑋

But

𝑞−1(𝑓−1(𝑉 )) = (𝑓 ∘ 𝑞)−1(𝑉 ) = 𝑔−1(𝑉 )

Which is open in 𝑋 since 𝑔 is continuous. ☐

Definition 2.13

For a group 𝐺 and a set 𝑋, a group action of 𝐺 on 𝑋 is a function ∗ : 𝐺 × 𝑋 → 𝑋, where we 

write ∗ (𝑎, 𝑥) as 𝑎 ∗ 𝑥 or 𝑎𝑥, such that

1. When 𝑒 ∈ 𝐺 is the identity element we have 𝑒 ∗ 𝑥 = 𝑥 for all 𝑥 ∈ 𝑋.

2. For all 𝑎, 𝑏 ∈ 𝐺 and all 𝑥 ∈ 𝑋, we have

𝑎 ∗ (𝑏 ∗ 𝑥) = (𝑎𝑏)⏟
group op

∗ 𝑥

We say that 𝐺 acts on 𝑋 (by using the group action).

Remark

A group action of 𝐺 on 𝑋 determines and is determined by a group homomorphism 

𝜌 : 𝐺 → Perm(𝑋) where 𝜌(𝑎)(𝑥) = 𝑎 ∗ 𝑥 (the homomorphism 𝜌 is called a representation of 𝐺)

Remark

Given an action of 𝐺 on 𝑋, we can define an equivalence relation on 𝑋 by

𝑥 ∼ 𝑦 ⟺ 𝑦 = 𝑎 ∗ 𝑥 for some 𝑎 ∈ 𝐺.

In this case, the equivalence class of 𝑥 is called the orbit of 𝑥 (we might write [𝑥] as Orb(𝑥)) and 

we write the quotient 𝑋/∼  as 𝑋/𝐺. So

𝑋/𝐺 = {[𝑥] | 𝑥 ∈ 𝑋}
= {Orb(𝑥) | 𝑥 ∈ 𝑋}
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Example 2.5

For 𝕊1 = {𝑢 ∈ ℝ2 | ‖𝑢‖ = 1}, we have 𝕊1 × ℝ ≅ ℝ2 ∖ {0}. Define

𝑓 : 𝕊1 × ℝ ⟶ ℝ2 ∖ {0}
(𝑢, 𝑡) ⟼ 𝑒𝑡𝑢

and define

𝑔 : ℝ2 ∖ {0} ⟶ 𝕊1 × ℝ

𝑥 ⟼ ( 𝑥
‖𝑥‖

, ln‖𝑥‖)

These maps are continuous (they are elementary functions) and they are inverses of each other.

Example 2.6

𝕊1 acts on ℝ2 = ℂ by complex multiplication. For 𝑎 ∈ ℝ2 = ℂ,

Orb(𝑎) = [𝑎] = {𝑢𝑎 | 𝑢 ∈ 𝕊1}

which is equal to the circle centered at 0 of radius ‖𝑎‖ (with [0] = {0}).

Show that ℝ2/𝕊1 ≅ [0, ∞) ⊆ ℝ we define

𝑓 : ℝ2/𝕊1 ⟶ [0, ∞)
[𝑥] ⟼ ‖𝑥‖

and define

ℎ : [0, ∞) ⟶ ℝ2/𝕊1

𝑟 ⟼ [𝑟] = [(𝑟, 0)] = {𝑟𝑒𝑖𝜃 | 𝜃 ∈ ℝ}

Note that 𝑓  is continuous because for the map 𝑔 : ℝ2 → [0, ∞) ⊆ ℝ given by 𝑔(𝑥) = ‖𝑥‖. We 

have 𝑔 = 𝑓 ∘ 𝑞. Since 𝑔 is continuous, it follows that 𝑓  is continuous. Also ℎ is continuous 

because ℎ = 𝑞 ∘ 𝑖 where 𝑖 : [0, ∞) ⟶ ℝ2 is the inclusion map 𝑖(𝑟) = (𝑟, 0). Finally, note that 𝑓  

and ℎ are inverses.
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Example 2.7

ℝ+ = (0, ∞) acts on ℝ2 be multiplication that is by 𝑡 ∗ 𝑥 = 𝑡𝑥. The orbits are for 𝑜 ≠ 𝑥 ∈ ℝ2, 

[𝑥] = {𝑡𝑥 | 0 < 𝑡 ∈ ℝ} which is the (open) ray from 0 through 𝑥 and [0] = {0}. Each of the rays 

[𝑥] for 0 ≠ 𝑥 ∈ ℝ2 intersects a unique point on 𝕊1. Which gives a fairly natural bijective map

𝑓 : ℝ2/ℝ+ ⟶ 𝕊1 ∪ {0}

[𝑥] ⟼ {
𝑥

‖𝑥‖ if 0 ≠ 𝑥 ∈ ℝ2

0 if 𝑥 = 0 ∈ ℝ2

The inverse 𝑔 : 𝕊1 ∪ {0} → ℝ2/ℝ+ is given by 𝑢 ↦ [𝑢]. Note that 𝑔 is continuous (𝑔 = 𝑞 ∘ 𝑖 
where 𝑖 is the inclusion map 𝑖 : 𝕊1 ∪ {0} → ℝ2). But 𝑓  is not continuous, for example the set 

{0} is open in 𝕊1 ∪ {0} (it is an open ball) but 𝑓−1({0}) = {[0]} ⊆ ℝ2/ℝ+ and 

𝑞−1({[0]}) = {0} is not open in ℝ2. In fact, ℝ2/ℝ+ ≇ 𝕊1 ∪ {0}. One way to show this is to note 

that 𝕊1 ∪ {0} has a singleton which is open ({0}), but ℝ2/ℝ+ has no singleton which is open.

Remark

ℝ2/ℝ+ is not Hausdorff, so it is not metrizable (there is no metric we can define on ℝ2/ℝ+ for 

which that quotient topology is equal to the metric topology)
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Example 2.8

ℤ acts by addition on ℝ (by 𝑛 ∗ 𝑥 = 𝑥 + 𝑛). The orbits are the sets 

[𝑥] = {𝑥 + 𝑛 | 𝑛 ∈ ℤ} = 𝑥 + ℤ Show that ℝ/ℤ ≅ 𝕊1. Define

𝑓 : ℝ/ℤ ⟶ 𝕊1

[𝑡] ⟼ 𝑒𝑖2𝜋𝑡

(and note that when [𝑠] = [𝑡] say 𝑠 = 𝑡 + 𝑛 where 𝑛 ∈ ℤ we have

𝑒𝑖2𝜋𝑠 = 𝑒𝑖2𝜋(𝑡+𝑛) = 𝑒𝑖2𝜋𝑡

) Note that 𝑓  is continuous because the map 𝑓 : ℝ → 𝕊1 given by 𝑔(𝑡) = 𝑒𝑖2𝜋𝑡 is continuous with 

𝑔 = 𝑓 ∘ 𝑞. The inverse map

ℎ : 𝕊1 ⟶ ℝ/ℤ

𝑒𝑖𝜃 ⟼ [ 𝜃
2𝜋

]

To see that ℎ is continuous, we can express ℎ in Cartesian coordinates. We remark that there is 

an angle map

𝜃 : ℝ2 ∖ {0} ⟶ [0, 2𝜋)

(𝑥, 𝑦) ⟼
{

arccos 𝑥

√𝑥2+𝑦2 if 𝑦 > 0 or (𝑦 = 0 and 𝑥 ≠ 0)
2𝜋 − arccos 𝑥

√𝑥2+𝑦2 if 𝑦 < 0 or (𝑦 = 0 and 𝑥 < 0)

This map is not continuous along the positive 𝑥-axis. In Cartesian coordinates, ℎ : 𝕊1 → ℝ/ℤ is 

given by

ℎ(𝑥, 𝑦) = {
[ 1

2𝜋 arccos(𝑥)] if 𝑦 ≥ 0
[1 − 1

2𝜋 arccos(𝑥)] if 𝑦 ≤ 0

that is by

ℎ(𝑥, 𝑦) = {ℎ1(𝑥, 𝑦) if (𝑥, 𝑦) ∈ 𝐴
ℎ2(𝑥, 𝑦) if (𝑥, 𝑦) ∈ 𝐵

Where

𝐴 = {(𝑥, 𝑦) ∈ 𝕊1 | 𝑦 ≥ 0}

𝐵 = {(𝑥, 𝑦) ∈ 𝕊1 | 𝑦 ≤ 0}

and

ℎ1(𝑥, 𝑦) = 1
2𝜋

arccos 𝑥

ℎ2(𝑥, 𝑦) = 1 − 1
2𝜋

arccos 𝑥
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3 Connected, Path-Connected and Compact Spaces

Definition 3.1

Let 𝑋 be a topological space. For subsets 𝐴, 𝐵 ⊆ 𝑋, we say that 𝐴 and 𝐵 separate 𝑋 when 

𝐴 ≠ ∅, 𝐵 ≠ ∅, 𝐴 ∩ 𝐵 = ∅ and 𝐴 ∪ 𝐵 = 𝑋. We say that 𝑋 is disconnected when there exist 

(nonempty disjoint) open sets 𝑈, 𝑉 ⊆ 𝑋 which separate 𝑋. Otherwise, we say that 𝑋 is 

connected.

Proposition 3.1

𝑋 is connected if and only if the only clopen sets are 𝑋 and ∅.

Proof: If 𝑋 is disconnected, we can find open sets 𝑈, 𝑉 ⊆ 𝑋 which separate 𝑋 then the sets ∅, 𝑈, 𝑉 , 𝑋 

are clopen. On the other hand, if ∅ ≠ 𝑈 ⊊ 𝑋 with both 𝑈  both open and closed in 𝑋, then 𝑈  and 

𝑉 = 𝑋 ∖ 𝑈  are open sets in 𝑋 which separate 𝑋. ☐

Exercise 3.0.1

When 𝑋 is a metric space and 𝐴 ⊆ 𝑋 is a subspace, then 𝐴 is connected if and only if there do 

not exist open sets 𝑈, 𝑉  in 𝑋 such that 𝑈 ∩ 𝐴 ≠ ∅, 𝑉 ∩ 𝐴 ≠ ∅, 𝑈 ∩ 𝑉 = ∅ and 𝐴 ⊆ 𝑈 ∪ 𝑉 .

Example 3.1

The connected sets in ℝ are the intervals (including ∅, {𝑎}, ℝ)

Example 3.2

The (non-empty) connected subsets of ℚ are the singletons (by using the density of the 

irrationals)

Theorem 3.2

If 𝑓 : 𝑋 → 𝑌  is a continuous map between topological spaces, and if 𝑋 is connected, then 𝑓(𝑋) 
is connected.

Proof: Suppose 𝑋 is connected and 𝑓 : 𝑋 → 𝑌  is continuous. By restricting the codomain, the map 

𝑓 : 𝑋 → 𝑓(𝑋) is also continuous. Suppose, for a contradiction that 𝑓(𝑋) is disconnected. Let 𝑈, 𝑉  be 

open sets in 𝑓(𝑋) which separate 𝑓(𝑋). Then 𝑓−1(𝑈) and 𝑓−1(𝑉 ) are open sets in 𝑋 which separate 

𝑋, so that 𝑋 is disconnected, giving the desired contradiction. ☐

Lemma 3.3

Let 𝑋 be a subspace of 𝑌 . Suppose 𝑌  is disconnected. Let 𝑈, 𝑉  be open sets in 𝑌  that separate 

𝑌 . If 𝑋 is connected, then 𝑋 ⊆ 𝑈  or 𝑋 ⊆ 𝑉 .

Proof: Suppose 𝑋 ⊈ 𝑈  and 𝑋 ⊈ 𝑉 . Since 𝑈 ∪ 𝑉 = 𝑌 , it follows that 𝑋 ∩ 𝑈 ≠ ∅ and 𝑋 ∩ 𝑉 ≠ ∅. And 

these two sets are open sets in 𝑋 which separate 𝑋. ☐
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Theorem 3.4

Let 𝑋 = ⋃𝑘∈𝐾 𝐴𝑘 where each subspace 𝐴𝑘 is connected. With ⋂𝑘 𝐴𝑘 ≠ ∅. Then 𝑋 is 

connected.

Proof: Suppose, for a contradiction, that 𝑋 is disconnected. Let 𝑈, 𝑉  be open sets in 𝑋 which separate 

𝑋. Let 𝑝 ∈ ⋂𝑘∈𝐾 𝐴𝑘 ⊆ 𝑋 = 𝑈 ∪ 𝑉 . Either 𝑝 ∈ 𝑈  or 𝑝 ∈ 𝑉  (but not both) say 𝑝 ∈ 𝑈 . For each index 𝑘, 

since 𝐴𝑘 is connected either 𝐴𝑘 ⊆ 𝑈  or 𝐴𝑘 ⊆ 𝑉  and since 𝑝 ∈ 𝐴𝑘, 𝑝 ∉ 𝑉 , we must have 𝐴𝑘 ⊆ 𝑈 . 

Since 𝐴𝑘 ⊆ 𝑈  for every 𝑘 ∈ 𝐾 , we have 𝑋 = ⋃𝑘∈𝐾 𝐴𝑘 ⊆ 𝑈 . This is not possible since 𝑈  and 𝑉  

separate 𝑋. ☐

Theorem 3.5

The product of two connected spaces is connected.

Proof: Let 𝑋 and 𝑌  be connected spaces. Suppose both 𝑋 and 𝑌  are nonempty (since if either one was, 

∅ is connected). Choose 𝑎 ∈ 𝑋 and 𝑏 ∈ 𝑌  so (𝑎, 𝑏) ∈ 𝑋 × 𝑌 . Since 𝑋 × {𝑏} ≅ 𝑋 and 𝑋 is connected, 

it follows that 𝑋 × {𝑏} is connected. For each 𝑥 ∈ 𝑋, since {𝑥} × 𝑌 ≅ 𝑌  and 𝑌  is connected, it 

follows that {𝑥} × 𝑌  is connected. Since 𝑋 × {𝑏} and {𝑥} × 𝑌  are connected and 

(𝑋 × {𝑏}) ∩ ({𝑥} × 𝑌 ) ≠ ∅ (since (𝑥, 𝑏) is in both), it follows from the previous theorem that the set 

𝐴𝑥 = (𝑋 × {𝑏}) ∪ ({𝑥} × 𝑌 ) is connected. Since each 𝐴𝑥 is connected and ⋂𝑥∈𝑋 𝐴𝑥 ≠ ∅ (indeed 

(𝑎, 𝑏) is in the intersection) it follows that ⋃𝑥∈𝑋 𝐴𝑥 = 𝑋 × 𝑌  is connected. ☐

Lemma 3.6

Let 𝑋 be a subspace of 𝑌 . Let 𝑈, 𝑉  be subsets of 𝑋 which separate 𝑋 (not necessarily open). 

Then 𝑈  is open in 𝑋 if and only if 𝑈 ∩ 𝑉 = ∅. Symmetrically, 𝑉  is open in 𝑋 if and only if 

𝑉 ∩ 𝑈 = ∅ where 𝑈 = Cl𝑌 (𝑈), 𝑉 = Cl𝑌 (𝑉 )

Theorem 3.7

Let 𝑋 be a topological space, let 𝐴, 𝐵 be subspaces with 𝐴 ⊆ 𝐵 ⊆ 𝐴. If 𝐴 is connected, then so 

is 𝐵. In particular, if 𝐴 is connected, then so is 𝐴.

Proof: Suppose 𝐴 is connected. Suppose for a contradiction that 𝐵 is not connected. Let 𝑈, 𝑉 ⊆ 𝐵 be 

open sets in 𝐵 which separate 𝐵. Since 𝐴 is connected and 𝑈, 𝑉  are open sets in 𝐵, which separate 𝐵, 

by previous lemma, either 𝐴 ⊆ 𝑈  or 𝐴 ⊆ 𝑉 . Say 𝐴 ⊆ 𝑈 . Since 𝐴 ⊆ 𝑈  we have 𝐴 ⊆ 𝑈  so that 

𝐵 ⊆ 𝐴 ⊆ 𝑈 . By the previous lemma, 𝑉 ∩ 𝑈 = ∅ hence 𝑉 ∩ 𝐵 = ∅, but 𝑉 ⊆ 𝐵 so 𝑉 = ∅ which 

contradicts the fact that 𝑈  and 𝑉  separate 𝐵. ☐

Theorem 3.8

Let 𝑋𝑘 be a connected topological space for each 𝑘 ∈ 𝐾 . Then ∏ 𝑋𝑘 is connected using the 

product topology.
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Definition 3.2

When 𝑋 is a topological space, and 𝐴 ⊆ 𝑋, we say that 𝐴 is dense in 𝑋 when 𝐴 = 𝑋. Note that

𝐴 = 𝑋 ⟺ the only closed set 𝐾 ⊆ 𝑋 with 𝐴 ⊆ 𝐾 is 𝐾 = 𝑋
⟺ the only open set 𝑈 ⊆ 𝑋 with 𝐴 ∩ 𝑈 = ∅ is 𝑈 = ∅
⟺ for every nonempty open set 𝑈 ⊆ 𝑋 we have 𝐴 ∩ 𝑈 ≠ ∅

When ℬ︀ is a basis for the topology on 𝑋, verify that 𝐴 = 𝑋 if and only if for all ∅ ≠ 𝐵 ∈ ℬ︀ we 

have 𝐴 ∩ 𝐵 ≠ ∅.

Example 3.3

ℝ𝜔 = ∏∞
𝑘=1 ℝ using the box topology is not connected. Indeed verify that the sets

𝑈 = {𝑥 ∈ ℝ𝜔 | ‖𝑥‖∞ < ∞}
= the set of all bounded sequences in ℝ

and

𝑉 = {𝑥 ∈ ℝ𝜔 | ‖𝑥‖∞ = ∞}
= the set of all unbounded sequences in ℝ

are open in ℝ𝜔 (with the box topology) and they cover ℝ𝜔.

3.1 Connected Components

Definition 3.3

Let 𝑋 be a topological space. Define a binary relation ∼ on 𝑋 by stipulating that for 𝑎, 𝑏 ∈ 𝑋

𝑎 ∼ 𝑏 ⟺ there exists a connected subspace 𝐴 ⊆ 𝑋 with 𝑎, 𝑏 ∈ 𝐴

Note that ∼ is an equivalence relation. Indeed 𝑎 ∼ 𝑎 since {𝑎} is connected. If 𝑎 ∼ 𝑏 then 

obviously 𝑏 ∼ 𝑎. If 𝑎 ∼ 𝑏 and 𝑏 ∼ 𝑐 then we can choose connected subspaces 𝐴, 𝐵 ⊆ 𝑋 with 

𝑎, 𝑏 ∈ 𝐴, 𝑏, 𝑐 ∈ 𝐵, then by a previous lemma, since 𝑏 ∈ 𝐴 ∩ 𝐵, we have 𝐴 ∪ 𝐵 is connected, and 

𝑎, 𝑐 ∈ 𝐴 ∪ 𝐵, so that 𝑎 ∼ 𝑐. The equivalence classes in 𝑋 under ∼ are called the connected 

components of 𝑋. (Note that the connected components are disjoint and they cover 𝑋).

Theorem 3.9

Let 𝑋 be a topological space. The connected components of 𝑋 are the maximal connected 

subspaces of 𝑋. Indeed, each connected component of 𝑋 is connected, and every non-empty 

connected subspace of 𝑋 is contained inside exactly one of the connected components.

Proof: ☐
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3.2 Path-Connectedness

Definition 3.4

Let 𝑋 be a topological space. For 𝑎, 𝑏 ∈ 𝑋, a (continuous) path from 𝑎 to 𝑏 in 𝑋 is a continuous 

map 𝛼 : [0, 1] ⊆ ℝ → 𝑋 with 𝛼(0) = 𝑎 and 𝛼(1) = 𝑏. We say that 𝑋 is path connected when for 

every 𝑎, 𝑏 ∈ 𝑋 there exists a path from 𝑎 to 𝑏 in 𝑋.

Theorem 3.10

Every path-connected space is connected.

Proof: Suppose 𝑋 is path-connected. Suppose, for a contradiction, that 𝑋 is not connected. Choose 

open sets 𝑈, 𝑉 ⊆ 𝑋 which separate 𝑋. Choose 𝑎 ∈ 𝑈  and 𝑏 ∈ 𝑉 . Since 𝑋 is path-connected we can 

choose a path 𝛼 : [0, 1] ⊆ ℝ → 𝑋 with 𝛼(0) = 𝑎 𝛼(1) = 𝑏. Then the sets 𝛼−1(𝑈) and 𝛼−1(𝑉 ) are open 

and separate [0, 1], contradiction. ☐

Theorem 3.11

The image of a path connected space under a continuous map is path connected. In particular, 

for topological spaces 𝑋 and 𝑌 . If 𝑋 ≅ 𝑌 , then 𝑋 is path connected if and only if 𝑌  is path 

connected.

Proof: Let 𝑓 : 𝑋 → 𝑌  be continuous and suppose 𝑋 is path connected. Let 𝑐, 𝑑 ∈ 𝑓(𝑋). Choose 

𝑎, 𝑏 ∈ 𝑋 with 𝑓(𝑎) = 𝑐, 𝑓(𝑏) = 𝑑. Since 𝑋 is path connected, we can choose a path 𝛼 in 𝑋 from 𝑎 to 𝑏. 

Then 𝛽 = 𝑓 ∘ 𝛼 is path in 𝑌  from 𝑐 to 𝑑. ☐

Note

Convex sets are path connected (in normed linear spaces). More generally, the image of a convex 

set (in a normed linear spaces) under a continuous map is path connected, hence connected.

Example 3.4

𝐴 = {𝑥 ∈ ℝ2 | 1 ≤ ‖𝑥‖ ≤ 2} is the image of [1, 2] × [0, 2𝜋] under the polar coordinates map 

𝑝 : ℝ2 → ℝ2 given by 𝑝(𝑟, 𝜃) = (𝑟 cos 𝜃, 𝑟 sin 𝜃) and thus path connected. (Using the fact that 

rectangles (also balls) are convex and hence connected).

Proposition 3.12

Using the product topology, a product of path-connected spaces is path connected.

Proof: Let 𝑋𝑘 be path connected for each 𝑘 ∈ 𝐾 . Let 𝑎, 𝑏 ∈ ∏ 𝑋𝑘. For each 𝑘 ∈ 𝐾 , choose a path 𝛼𝑘 in 

𝑋𝑘 from 𝑎𝑘 to 𝑏𝑘. Then the map 𝛼 : [0, 1] → ∏ 𝑋𝑘 given by

𝛼(𝑡)(𝑘) = 𝛼(𝑡)𝑘 = 𝛼𝑘(𝑡)

is a (continuous) path in ∏ 𝑋𝑘 from 𝑎 to 𝑏. ☐
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Remark

Using the box topology, this isn’t true.

Definition 3.5

Let 𝑋 be a topological space. Define a binary relation ∼ on 𝑋 by stipulating that for 𝑎, 𝑏 ∈ 𝑋

𝑎 ∼ 𝑏 ⟺ there exists a path in 𝑋 from 𝑎 to 𝑏

Note that this is an equivalence relation on 𝑋, indeed for 𝑎, 𝑏, 𝑐 ∈ 𝑋:

1. 𝑎 ∼ 𝑎 since the constant path 𝜅𝑎 is a path from 𝑎 to 𝑎 in 𝑋.

2. If 𝑎 ∼ 𝑏 then there is a path 𝛼 from 𝑎 to 𝑏. Then 𝛽(𝑡) = 𝛼(1 − 𝑡)
3. If 𝑎 ∼ 𝑏 and 𝑏 ∼ 𝑐 with paths 𝛼, 𝛽 then 𝛾 : [0, 1] → 𝑋 given by

𝛾(𝑡) = {
𝛼(2𝑡) for 0 ≤ 𝑡 ≤ 1

2
𝛽(2𝑡 − 1) for 1

2 ≤ 𝑡 ≤ 1

is a (continuous) path in 𝑋 from 𝑎 to 𝑐 (by the glueing lemma).

The equivalence classes in 𝑋 under ∼ are called the path components of 𝑋

Theorem 3.13

Let 𝑋 be a topological space. The path components of 𝑋 are the maximal path connected 

subspaces of 𝑋. Indeed, each path component of 𝑋 is path connected, and every path connected 

subspace of 𝑋 is contained in exactly one of the path components of 𝑋.

Proof: path components are path connected by the definition of ∼. Let 𝐴 be any path connected 

subspace of 𝑋. Let 𝑃 , 𝑄 be any path components for which 𝐴 ∩ 𝑃 ≠ ∅ and 𝐴 ∩ 𝑄 ≠ ∅. Choose 

𝑝 ∈ 𝐴 ∩ 𝑃  and 𝑞 ∈ 𝐴 ∩ 𝑄. Since 𝑝, 𝑞 ∈ 𝐴 and 𝐴 is path connected, we have 𝑝 ∼ 𝑞 and hence 

𝑃 = [𝑝] = [𝑞] = 𝑄 since the path components cover 𝑋 and 𝐴 intersects with a unique path component 

𝑃 , we have 𝐴 ⊆ 𝑃 . ☐

Note

In a topological space 𝑋, since each connected subspace of 𝑋 is contained in a unique connected 

component of 𝑋, and since each path component of 𝑋 is path connected, hence connected, it 

follows that each connected component of 𝑋 is a (disjoint) union of some of the path 

components of 𝑋.
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Example 3.5

Let 𝐴 = {(𝑥, sin 1
𝑥) | 𝑜 < 𝑥 ≤ 1

𝜋}. Let 𝐵 = {(0, 𝑦) | −1 ≤ 𝑦 ≤ 1}. Let 𝑋 = 𝐴 ∪ 𝐵. We see that 

𝐴 = 𝐴 ∪ 𝐵 = 𝑋. Note that 𝐴 is path connected because it is the image of the convex set (0, 1
𝜋] 

under the continuous map 𝑔 : (0, 1
𝑝) → ℝ2 given by 𝑔(𝑥) = (𝑠, sin 1

𝑥). Also 𝐵 is convex hence 

path connected. Note that 𝑋 is connected since it is the closure of a connected set 𝐴. We claim 

that 𝑋 is not path connected, indeed there is no path in 𝑋 from a point in 𝐴 to a point in 𝐵. 

Since 𝐴 and 𝐵 are path connected with ( 1
𝜋 , 0) ∈ 𝐴 and (0, 0) ∈ 𝐵, it suffices to show that there 

is no path in 𝑋 = 𝐴 ∪ 𝐵 from ( 1
𝜋 , 0) to (0, 0). Suppose for a contradiction that there is such a 

path 𝛼 : [0, 1] → 𝐴 ∪ 𝐵 from ( 1
𝜋 , 0) to (0, 0) in 𝑋 = 𝐴 ∪ 𝐵. Note that the map 𝛼 : [0, 1] → ℝ2 is 

continuous, say 𝛼 is given by 𝛼(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) where 𝑥, 𝑦 : [0, 1] → ℝ are both continuous 

with (𝑥(𝑡), 𝑦(𝑡)) ∈ 𝑋 = 𝐴 ∪ 𝐵 for all 𝑡 ∈ [0, 1] and with 𝑥(0) = 1
𝜋 , 𝑥(1) = 0, 𝑦(0) = 𝑦(1) = 0. 

Also recall that when (𝑥, 𝑦) ∈ 𝑋 = 𝐴 ∪ 𝐵 with 𝑥 > 0 we have (𝑥, 𝑦) ∈ 𝐴 so that 𝑦 = sin 1
𝑥 . 

Since 𝑥 : [0, 1] → ℝ is continuous with 𝑥(0) = 1
𝜋  and 𝑥(1) = 0. By IVT, we can choose 

0 < 𝑡1 < 𝑡2 < ⋯ < 1 so that 𝑥(𝑡𝑛) = 2
(2𝑛+1)𝜋  and hence 

𝑦(𝑡𝑛) = sin 1
𝑥(𝑡𝑛) = sin (2𝑛+1)𝜋

2 = (−1)𝑛. Since (𝑡𝑛)𝑛≥1 is increasing and bounded above (by 1) it 

converges with lim𝑛→∞ 𝑡𝑛 = 𝑠 = sup{𝑡𝑛 | 𝑛 ∈ ℕ} ≤ 1 and we have 0 < 𝑡𝑛 < 𝑠 ≤ 1 for all 

𝑛 ∈ ℕ. Since 𝑡𝑛 → 𝑠 and since 𝛼 is continuous at 𝑠, we have

(𝑥(𝑠), 𝑦(𝑠)) = 𝛼(𝑠) = lim
𝑛→∞

𝛼(𝑡𝑛) = ( lim
𝑛→∞

𝑥(𝑡𝑛), lim
𝑛→∞

𝑦(𝑡𝑛))

so we have

lim
𝑛→∞

𝑥(𝑡𝑛) = lim
𝑛→∞

2
(2𝑛 + 1)𝜋

= 0

but

lim
𝑛→∞

𝑦(𝑡𝑛) = lim
𝑛→∞

(−1)𝑛

which does not exist. In conclusion, 𝑋 = 𝐴 ∪ 𝐵 is connected, but not path connected. Since 𝑋 is 

connected, it only has one connected component, namely 𝑋. Since 𝑋 is not path connected, it 

has at least 2 path components so, since 𝐴 and 𝐵 are path connected with 𝑋 = 𝐴 ∪ 𝐵, 𝐴 and 𝐵 

are the two path components of 𝑋.

3.3 Compactness

Definition 3.6

Let 𝑋 be a topological space. For a set 𝒮︀ of subsets of 𝑋, we say that 𝒮︀ covers 𝑋 or that 𝒮︀ is a 

cover of 𝑋 when 𝑋 = ⋃ 𝒮︀. When 𝒮︀ is a cover of 𝑋, a subcover is a subset ℛ︀ ⊆ 𝒮︀ such that 

𝑋 = ⋃ ℛ︀. An open cover of 𝑋 is a set of open sets which covers 𝑋. We say that 𝑋 is compact 

when every open cover of 𝑋 has a finite subcover.

Theorem 3.14

The image of a compact space under a continuous map is compact.
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Proof: Let 𝑓 : 𝑋 → 𝑌  be a map between topological spaces. Suppose that 𝑋 is compact and 𝑓  is 

continuous. Note the map 𝑓 : 𝑋 → 𝑓(𝑋) (by restricting codomain) is continuous. We claim that 𝑓(𝑋) 
is compact. Let 𝒯︀ be an open cover of 𝑓(𝑋). Let 𝒮︀ = {𝑓−1(𝑉 ) | 𝑉 ∈ 𝒯︀}. Then 𝒮︀ is an open cover of 

𝑋. Since 𝑋 is compact, 𝒮︀ has a finite subcover, 𝑉1, …, 𝑉𝑛 ∈ 𝒯︀ so that 𝑋 = ⋃𝑛
𝑘=1 𝑓−1(𝑉𝑘). Then 

𝑓(𝑋) = ⋃𝑛
𝑘=1 𝑉𝑘 so that {𝑉1, …, 𝑉𝑛} is a finite subcover of 𝒯︀. Thus 𝑓(𝑋) is compact, as claimed. ☐

Theorem 3.15 Heine-Borel

For 𝐴 ⊆ ℝ𝑛, 𝐴 is compact iff 𝐴 is closed and bounded.

Definition 3.7

Let 𝑋 be a subspace of 𝑌 . For a set 𝒯︀ of subsets of 𝑌 , we say 𝒯︀ covers 𝑋 in 𝑌  or 𝒯︀ is a cover of 

𝑋 in 𝑌 , when 𝑋 ⊆ ⋃ 𝒯︀. When 𝒯︀ is a cover of 𝑋 in 𝑌 , a subcover of 𝒯︀ (of 𝑋 in 𝑌 ) is a subset 

ℛ︀ ⊆ 𝒯︀ such that 𝑋 ⊆ ⋃ ℛ︀. An open cover of 𝑋 in 𝑌  is a set 𝒯︀ of open sets in 𝑌  with 

𝑋 ⊆ ⋃ 𝒯︀. We say that 𝑋 is compact in 𝑌  when every open cover of 𝑋 in 𝑌  has a finite 

subcover (of 𝑋 in 𝑌 ).

Theorem 3.16

Let 𝑋 be a subspace of 𝑌 . Then 𝑋 is compact (in itself) iff 𝑋 is compact in 𝑌 .

Proof: Suppose 𝑋 is compact (in 𝑋) let 𝒯︀ be an open cover of 𝑋 in 𝑌 . Let 𝒮︀ = {𝑉 ∩ 𝑋 | 𝑉 ∈ 𝒯︀}. Note 

that 𝒮︀ is an open cover of 𝑋. Since 𝑋 is compact in itself, we can choose 𝑉1, …, 𝑉𝑛 ∈ 𝒯︀ such that 

𝑋 = ⋃𝑛
𝑘=1(𝑉𝑘 ∩ 𝑋) = ⋃𝑛

𝑘=1 𝑉𝑘 ∩ 𝑋. Then 𝑋 ⊆ ⋃𝑛
𝑘=1 𝑉𝑘 so that {𝑉1, …, 𝑉𝑛} is a finite subcover of 𝒯︀ 

(for 𝑋 in 𝑌 ). Suppose, conversely, that 𝑋 is compact in 𝑌 . Let 𝒮︀ be an open cover of 𝑋 (in 𝑋). For each 

𝑈 ∈ 𝒮︀ we can choose 𝑉𝑈  open in 𝑌  such that 𝑈 = 𝑉𝑈 ∩ 𝑋. Then 𝒯︀ = {𝑉𝑈 | 𝑈 ∈ 𝒮︀} is an open cover 

of 𝑋 in 𝑌 . Since 𝑋 is compact in 𝑌 , we can choose 𝑈1, …, 𝑈𝑛 ∈ 𝒮︀ such that 𝑋 ⊆ ⋃𝑛
𝑘=1 𝑉𝑈𝑘

. Then

𝑋 = ⋃
𝑛

𝑘=1
𝑉𝑈𝑘

∩ 𝑋 = ⋃
𝑛

𝑘=1
(𝑉𝑈𝑘

∩ 𝑋) = ⋃
𝑛

𝑘=1
𝑈𝑘

so that {𝑈1, …, 𝑈𝑛} is a finite subcover of 𝒮︀ (of 𝑋 in 𝑋). ☐

Remark

When 𝑋 is a subspace of a metric space 𝑌  (but not in general when 𝑋 is a subspace of a 

topological space 𝑌 ), we have an analogous result for the connectedness of 𝑋 in 𝑌 : 𝑋 is 

connected in 𝑌  when there do not exist open sets 𝑈, 𝑉  in 𝑌  which separate 𝑋 in 𝑌 , meaning 

that 𝑈 ∩ 𝑋 ≠ ∅, 𝑉 ∩ 𝑋 ≠ ∅, 𝑈 ∩ 𝑉 = ∅, 𝑋 ⊆ 𝑈 ∪ 𝑉 . Verify that (when 𝑌  is a metric space) 𝑋 

is connected (in itself) iff 𝑋 is connected in 𝑌 .

Theorem 3.17

Every closed subspace of a compact topological space is compact.
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Proof: Let 𝑋 be a subspace of 𝑌 . Suppose 𝑌  is compact (in 𝑌 ) and that 𝑋 is closed in 𝑌 . Let 𝒮︀ be an 

open cover of 𝑋 in 𝑌 . Since 𝑋 is closed in 𝑌 , 𝑋𝑐 = 𝑌 ∖ 𝑋 is open in 𝑌 . Note that 𝒮︀ ∪ {𝑋𝑐} is an open 

cover of 𝑌 . Since 𝑌  is compact, we can choose a finite subcover of 𝒮︀ ∪ {𝑋𝑐} so we can choose a finite 

subset ℛ︀ ⊆ 𝒮︀ such that ℛ︀ ∪ {𝑋𝑐} covers 𝑌 . Then ℛ︀ is a finite subcover of 𝒮︀ (of 𝑋 in 𝑌 ). ☐

Theorem 3.18

Every compact subspace of a Hausdorff space is closed.

Proof: Let 𝑋 ⊆ 𝑌  be a subspace. Suppose that 𝑋 is compact and 𝑌  is Hausdorff. We shall show 

𝑋𝑐 = 𝑌 ∖ 𝑋 is open in 𝑌 . Let 𝑏 ∈ 𝑋𝑐. For each 𝑎 ∈ 𝑋, since 𝑌  is Hausdorff we can choose disjoint 

open sets 𝑈𝑎 and 𝑉𝑎 in 𝑌  with 𝑎 ∈ 𝑈𝑎 and 𝑏 ∈ 𝑉𝑎. Note that 𝒮︀ = {𝑈𝑎 | 𝑎 ∈ 𝑋} is an open cover of 𝑋 in 

𝑌 . Since 𝑋 is compact, we can choose 𝑎1, …, 𝑎𝑛 ∈ 𝑋 such that 𝑋 ⊆ ⋃𝑛
𝑘=1 𝑈𝑎𝑘

. Let 𝑈 = ⋃𝑛
𝑘=1 𝑈𝑎𝑘

 and 

𝑉 = ⋂𝑛
𝑘=1 𝑉𝑎𝑘

. Note that 𝑋 ⊆ 𝑈 , 𝑏 ∈ 𝑉  and 𝑈 ∩ 𝑉 = ∅. Since 𝑋 ⊆ 𝑈  and 𝑈 ∩ 𝑉 = ∅, we also have 

𝑋 ∩ 𝑉 = ∅ so that 𝑉 ⊆ 𝑋𝑐. Hence 𝑋𝑐 is open in 𝑌 , and 𝑋 is closed. ☐

Theorem 3.19

Let 𝑓 : 𝑋 → 𝑌  be a map between topological spaces. Suppose 𝑓  is continuous and bijective. 

Suppose is 𝑋 is compact and 𝑌  is Hausdorff. Then 𝑓−1 : 𝑌 → 𝑋 is continuous so that 𝑓  is a 

homeomorphism.

Proof: Let 𝑔 = 𝑓−1 : 𝑌 → 𝑋. To show that 𝑔 is continuous, we show that 𝑔−1(𝐾) is closed in 𝑌  for 

every closed set 𝐾 in 𝑋. Let 𝐾 be a closed set in 𝑋. Note that since 𝑔 = 𝑓−1 we have 𝑔−1(𝐾) = 𝑓(𝐾). 
Since 𝐾 is closed in 𝑋 and 𝑋 is compact, 𝐾 is compact. Since 𝑓  is continuous, 𝑓(𝐾) is compact. Since 

𝑓(𝐾) is a closed subspace of the Hausdorff space 𝑌 , 𝑓(𝐾) is closed in 𝑌 . ☐

Example 3.6

1. Recall that ℝ ≅ (0, 1), 𝕊1 × ℝ ≅ ℝ2 ∖ {0}, ℝ/ℤ ≅ 𝕊1,

2. ℝ ≇ [0, 1] since [0, 1] is compact but ℝ is not.

3. ℝ ≇ [0, 1) since [0, 1) ∖ {0} is connected but one cannot remove any point from ℝ and 

remain connected.

4. No two of ℝ, ℝ2, 𝕊1, 𝕊2 are homeomorphic. Since ℝ, ℝ2 are not compact, but 𝕊1, 𝕊2 are. ℝ 

and ℝ2 are not homeomorphic since one can remove a point from ℝ1 and disconnect it but 

you cannot do that with ℝ2. 𝕊1 ≇ 𝕊2 since 𝕊1 ∖ {𝑝} ≅ ℝ and 𝕊2 ∖ {𝑝} ≅ ℝ2.

Theorem 3.20

Let 𝑋 be a topological space. Then 𝑋 is compact if and only if 𝑋 has the following property 

which we call the finite intersection property on closed sets: For every set 𝒯︀ of closed subsets of 𝑋, 

if every finite subset of 𝒯︀ has nonempty intersection, then ⋂ 𝒯︀ is non empty.
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Definition 3.8

A partially ordered set is a set 𝑋 with a partial order ≤ such that ∀𝑥, 𝑦, 𝑧 ∈ 𝑋
1. 𝑥 ≤ 𝑥
2. If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 then 𝑥 = 𝑦
3. If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 then 𝑥 ≤ 𝑧

Definition 3.9

A chain in 𝑋 is a subset 𝐶 ⊆ 𝑋 such that for all 𝑥, 𝑦 ∈ 𝐶 we have 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥

Lemma 3.21 Zorn’s Lemma

Let 𝑋 be a partially ordered set. If every chain in 𝑋 has an upper bound in 𝑋, then 𝑋 has a 

maximal element (∃𝑎 ∈ 𝑋∄𝑥 ∈ 𝑋 𝑎 < 𝑥)

Theorem 3.22 Tychanoff’s Theorem

The product of a set of compact spaces is compact, using the product topology.

4 Countability and Separation Axioms

Definition 4.1

Let 𝑋 be a topological space.

1. We say that 𝑋 is first countable when for each 𝑎 ∈ 𝑋, there exists a countable set ℬ︀ of open 

sets in 𝑋 such that for every open 𝑈 ∋ 𝑎 there exists 𝐵 ∈ ℬ︀ such that 𝑎 ∈ 𝐵 ⊆ 𝑈 .

2. We say that 𝑋 is second countable when there exists a countable basis ℬ︀ for the topology on 

𝑋. We say that Lindelöf when every open cover of 𝑋 has a countable subcover.

3. We say that 𝑋 is separable when there exists a countable dense subset of 𝑋 (𝐴 ⊆ 𝑋 such 

that 𝐴 = 𝑋).

Theorem 4.1

1. Every metric space is first-countable.

2. For every metric space 𝑋, 𝑋 is second countable if and only if 𝑋 is Lindelöf if and only if 

𝑋 is separable.

Theorem 4.2

Let 𝑋 be a topological space. If 𝑋 is second countable then

1. 𝑋 is first countable

2. 𝑋 is Lindelöf

3. 𝑋 is separable
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Proof: Suppose 𝑋 is second countable and ℬ︀ a countable basis for the topology on 𝑋. It is clear that 𝑋 

is first countable (take ℬ︀𝑎 = ℬ︀). To show 𝑋 is Lindelöf, let 𝒮︀ be an open cover of 𝑋. For each 𝑎 ∈ 𝑋, 

choose 𝑈𝑎 ∈ 𝒮︀ with 𝑎 ∈ 𝑈𝑎, then choose 𝐵𝑎 ∈ ℬ︀ with 𝑎 ∈ 𝐵𝑎 ⊆ 𝑈𝑎. Then {𝐵𝑎 | 𝑎 ∈ 𝑋} is a countable 

open cover since {𝐵𝑎 | 𝑎 ∈ 𝑋} ⊆ ℬ︀. Choose 𝑎1, … in 𝑋 such that {𝐵𝑎 | 𝑎 ∈ 𝑋} = {𝐵𝑎1
, 𝐵𝑎2

, …}. 

Then {𝑈𝑎1
, …} is a countable subcover of 𝒮︀. To show 𝑋 is separable, write ℬ︀ = {𝐵1, 𝐵2, …}. For each 

𝑘 ≥ 1, choose 𝑎𝑘 ∈ 𝐵𝑘. Then {𝑎1, 𝑎2, …} is dense in 𝑋 since 𝑎𝑘 ∈ 𝐴 ∩ 𝐵𝑘 for each 𝑘 ≥ 1 so that 

𝐴 ∩ 𝐵𝑘 ≠ ∅. ☐

Example 4.1

Here are some examples to show that when 𝑋 is not second countable, the other three properties 

do not imply one another

first countable Lindelöf separable second countable

ℝℓ ✓ ✓ ✓ ✗

𝐼2
𝑜 ✓ ✓(compact) ✗ ✗

Γ ✓ ✗ ✓ ✗

ℝcf ✗ ✓(compact) ✓ ✗

ℝcc ✗ ✓ ✗ ✗

ℝ𝑑 ✓ ✗ ✗ ✗

Note ℝℓ is ℝ with the lower limit topology. 𝐼2
𝑜  denotes the topological space with underlying set 

𝐼2 = [0, 1]2 and using the dictionary order topology. Γ is the Moore plane. ℝcf is 𝑅 with the co-

finite topology. ℝcc is ℝ with the co-countable topology.

Theorem 4.3

1. Every subspace of a first countable space is first countable.

2. Every subspace of a second countable space is second countable.

Theorem 4.4

1. The product of any two first countable spaces is first countable.

2. The product of any two second countable spaces is second countable.

3. The product of any separable countable spaces is separable.

Note

A subspace of a Lindelöf space need not be Lindelöf. A subspace of a separable space need not be 

separable. The product of two Lindelöf spaces need not be Lindelöf.
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Definition 4.2

Let 𝑋 be a topological space

1. We say that 𝑋 is T1 or that the 1-point subsets are closed in 𝑋 when the 1-point subsets 

are closed in 𝑋.

2. We say that 𝑋 is T2, or that 𝑋 is Hausdorff, when for all 𝑎, 𝑏 ∈ 𝑋 with 𝑎 ≠ 𝑏, there exists 

disjoint open sets 𝑈, 𝑉 ⊆ 𝑋 with 𝑎 ∈ 𝑈  and 𝑏 ∈ 𝑉 .

3. We say that 𝑋 is T3, or that 𝑋 is regular, when 1-point subsets of 𝑋 are closed and for all 

𝑎 ∈ 𝑋 and for every closed set 𝐵 in 𝑋 with 𝑎 ∉ 𝐵, there exist disjoint open sets 𝑈, 𝑉 ⊆ 𝑋 

with 𝑎 ∈ 𝑈  and 𝐵 ⊆ 𝑉 .

4. We say that 𝑋 is T4 or normal when 1-point subsets of 𝑋 are closed and for any two 

disjoint closed subsets 𝐴, 𝐵 ⊆ 𝑋, there exist disjoint open sets 𝑈, 𝑉 ⊆ 𝑋 such that 𝐴 ⊆ 𝑈  

and 𝐵 ⊆ 𝑉 .

5. We say that 𝑋 is metrizable when there is a metric on 𝑋 for which the metric topology is 

equal to the topology on 𝑋.

Theorem 4.5

Let 𝑋 be a topological space.

1. If 𝑋 is metrizable, then 𝑋 is normal

2. If 𝑋 is normal, then 𝑋 is regular

3. If 𝑋 is regular, then 𝑋 is Hausdorff

4. If 𝑋 is Hausdorff, then the 1-point subsets of 𝑋 are closed.

Example 4.2

• Not every space 𝑋 in which the 1-point subsets are closed is Hausdorff: for example, let 𝑋 be 

an infinite set with the cofinite topology.

• Not every Hausdorff space is regular: for example, let 𝐾 = { 1
𝑛 | 𝑛 ∈ ℤ+} and let ℝ𝐾  be the 

topological space whose underlying set is ℝ with basis consisting of sets of the form (𝑎, 𝑏) 
with 𝑎 < 𝑏 and (𝑎, 𝑏) ∖ 𝐾 with 𝑎 < 𝑏. This space is Hausdorff but not regular because the 

point 0 cannot be separated from the closed set 𝐾 .

• Not every regular space is normal for example, verify that (1) ℝℓ is normal (hence regular), (2) 

the product of two regular spaces is regular so that, in particular, ℝℓ × ℝℓ is regular, but (3) 

ℝℓ × ℝℓ is not normal.

Note

All of the countability and separation properties are invariant under homeomorphism.

Proposition 4.6

ℝℓ is not second countable.
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Proof: Let ℬ︀ be any basis for ℝℓ. For each 𝑎 ∈ ℝℓ, choose a basic open set 𝐵𝑎 ∈ ℬ︀ with 

𝑎 ∈ 𝐵𝑎 ⊆ [𝑎, 𝑎 + 1) and note that 𝑎 = min 𝐵𝑎. Define 𝐹 : ℝℓ → ℬ︀ by 𝐹(𝑎) by 𝐹(𝑎) = 𝐵𝑎. Then 𝐹  is 

injective since if 𝐹(𝑎) = 𝐹(𝑏) then 𝐵𝑎 = 𝐵𝑏. So 𝑎 = min 𝐵𝑎 = min 𝐵𝑏 = 𝑏. Since 𝐹  is injective,

2ℵ0 = |ℝℓ| ≤ |ℬ︀|

so that ℬ︀ is uncountable. ☐

Theorem 4.7

1. Every subspace of a T1 space is T1

2. Every subspace of a Hausdorff space is Hausdorff

3. Every subspace of a regular space is regular

4. Every subspace of a metrizable space is metrizable

Proof: Let 𝑋 ⊆ 𝑌  be a subspace.

1. Suppose 𝑌  is T1. For 𝑎 ∈ 𝑋, {𝑎} is closed in 𝑌  and {𝑎} = {𝑎} ∩ 𝑋, so it is closed in 𝑋.

2. Suppose 𝑌  is Hausdorff. Let 𝑎, 𝑏 ∈ 𝑋 with 𝑎 ≠ 𝑏. Since 𝑌  is Hausdorff, we can choose disjoint 

open sets 𝑈, 𝑉  in 𝑌  with 𝑎 ∈ 𝑈  and 𝑏 ∈ 𝑉 . Then 𝑈 ∩ 𝑋 and 𝑉 ∩ 𝑋 are disjoint open sets in 𝑋 

with 𝑎 ∈ 𝑈 ∩ 𝑋 and 𝑏 ∈ 𝑉 ∩ 𝑋.

3. Suppose 𝑌  is regular. Since 𝑌  is T1, so is 𝑋. Let 𝑎 ∈ 𝑋 and let 𝐵 be a closed set with 𝑎 ∉ 𝐵. Note 

that since 𝐵 is closed in 𝑋, 𝐵 = Cl𝑋 𝐵 = 𝐵 ∩ 𝑋 where 𝐵 = Cl𝑌 𝐵. Since 𝑎 ∈ 𝑋 and 

𝑎 ∉ 𝐵 = 𝐵 ∩ 𝑋 we have 𝑎 ∉ 𝐵. Since 𝑌  is regular, we can choose disjoint open sets 𝑈, 𝑉  in 𝑌  

with 𝑎 ∈ 𝑈  and 𝐵 ⊆ 𝑉 . Then 𝑈 ∩ 𝑋 and 𝑉 ∩ 𝑋 are disjoint open sets in 𝑋 with 𝑎 ∈ 𝑈 ∩ 𝑋 and 

𝐵 = 𝐵 ∩ 𝑋 ⊆ 𝑉 ∩ 𝑋
4. The proof of the last part is an exercise.

☐

Remark

A subspace of a normal space need not be normal. We shall soon see that for any set 𝐾 , [0, 1]𝐾  is 

normal. It can be (maybe) shown that (0, 1)𝐾 ⊆ [0, 1]𝐾  is not normal when 𝐾 is uncountable

Theorem 4.8 Alternate Definition of Regularity

Let 𝑋 be a T1 space. Then 𝑋 is regular if and only if for every 𝑎 ∈ 𝑋 and every open set 𝑊  in 𝑋 

with 𝑎 ∈ 𝑊 , there exists an open set 𝑈  in 𝑋 with 𝑎 ∈ 𝑈 ⊆ 𝑈 ⊆ 𝑊 .

Proof: Suppose 𝑋 is regular. Let 𝑊 ∋ 𝑎 be open. Then 𝑊 𝑐 is closed and 𝑎 ∉ 𝑊 𝑐 so, since 𝑋 is regular, 

we can choose disjoint open 𝑈, 𝑉  with 𝑎 ∈ 𝑈 , 𝑊 𝑐 ⊆ 𝑉 . Since 𝑈 ∩ 𝑉 = ∅ so 𝑈 ⊆ 𝑉 𝑐 which is closed, 

so 𝑈 ⊆ 𝑉 𝑐 and since 𝑊 𝑐 ⊆ 𝑉  we have 𝑉 𝑐 ⊆ 𝑊  so we have 𝑎 ∈ 𝑈 ⊆ 𝑈 ⊆ 𝑉 𝑐 ⊆ 𝑊 .

Suppose conversely, that for every open 𝑊  in 𝑋 and every 𝑎 ∈ 𝑊  there exists an open set 𝑈  in 𝑋 with 

𝑎 ∈ 𝑈 ⊆ 𝑈 ⊆ 𝑊 . Let 𝑎 ∈ 𝑋 and 𝐵 be a closed set in 𝑋 with 𝑎 ∉ 𝐵. Taking 𝑊 = 𝐵𝑐, we choose an 

open set 𝑈  in 𝑋 with 𝑎 ∈ 𝑈 ⊆ 𝑈 ⊆ 𝐵𝑐. Let 𝑉 = (𝑈)
𝑐
, which is open since 𝑈 ⊆ 𝐵𝑐 we have 

𝐵 ⊆ (𝑈)
𝑐

= 𝑉 , and since 𝑈 ⊆ 𝑈  we have 𝑈 ∩ (𝑈)
𝑐

= ∅, that is 𝑈 ∩ 𝑉 = ∅. ☐
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Theorem 4.9 The Closure of a Box

For each 𝑘 ∈ 𝐾 , let 𝑋𝑘 be a topological space, and let 𝐴𝑘 ⊆ 𝑋𝑘. Then using either the product 

or the box topology,

∏
𝑘∈𝐾

𝐴𝑘 = ∏
𝑘∈𝐾

𝐴𝑘

Theorem 4.10

Using the box or product topology,

1. Every product of T1 spaces is T1

2. Every product of Hausdorff spaces is Hausdorff

3. Every product of regular spaces is regular

Remark

Products of normal spaces need not be normal (for example ℝℓ is normal, but ℝℓ × ℝℓ is not)

Theorem 4.11

1. Every compact Hausdorff space is normal

2. Every regular, second countable space is normal

3. Every ordered set (with a maximum or a minimum element), using the order topology, is 

normal

Theorem 4.12 Urysohn’s Lemma

Let 𝑋 be a normal topological space and let 𝐴 and 𝐵 be disjoint closed sets in 𝑋. Then there 

exists a continuous map 𝑓 : 𝑋 → [0, 1] ⊆ ℝ such that 𝑓(𝑥) = 0 for all 𝑥 ∈ 𝐴 and 𝑓(𝑥) = 1 for 

all 𝑥 ∈ 𝐵.

Theorem 4.13 Urysohn’s Metrization Theorem

Every regular, second countable topological space is metrizable.

5 Topological Manifolds

Definition 5.1

A topological space 𝑋 is locally homeomorphic to ℝ𝑛 when 𝑋 has an open cover 𝒮︀ such that 

every 𝑈 ∈ 𝒮︀ is homeomorphic to an open subset of ℝ𝑛.
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Definition 5.2

An 𝑛-dimensional topological manifold, also called a (topological) 𝑛-manifold, is a Hausdorff, 

second countable, topological space 𝑋 which is locally homeomorphic to ℝ𝑛.

Definition 5.3

Note that when 𝑋 is an 𝑛-manifold, for each 𝑎 ∈ 𝑋 we can choose an open set 𝑈𝑎 in 𝑋 with 

𝑎 ∈ 𝑈𝑎 and a homeomorphism 𝜑𝑎 : 𝑈𝑎 ⊆ 𝑋 → 𝜑𝑎(𝑈𝑎) ⊆ ℝ𝑛 from 𝑈𝑎 (which is open in 𝑋) to 

𝜑𝑎(𝑈𝑎) (which is open in ℝ𝑛). 𝒮︀ = {𝑈𝑎 | 𝑎 ∈ 𝑋} is an open cover of 𝑋. When 

𝒮︀ = {𝑈𝑘 | 𝑘 ∈ 𝐾} is an open cover of 𝑋 and for each 𝑘 ∈ 𝐾 we have a homeomorphism 

𝜑𝑘 : 𝑈𝑘 ⊆ 𝑋 → 𝜑𝑘(𝑈𝑘) ⊆ ℝ𝑛 from each 𝑈𝑘 to an open set 𝜑𝑘(𝑈𝑘) in ℝ𝑛, the sets 𝑈𝑘 are called 

coordinate neighbourhoods and the homeomorphisms 𝜑𝑘 : 𝑈𝑘 → 𝜑𝑘(𝑈𝑘) are called (coordinate) 

charts, and the set 𝒜︀ = {𝜑𝑘 | 𝑘 ∈ 𝐾} is called an atlas for 𝑋. The homeomorphisms 

𝜑𝑘 ∘ 𝜑−1
ℓ : 𝜑ℓ(𝑈𝑘 ∩ 𝑈ℓ) → 𝜑𝑘(𝑈𝑘 ∩ 𝑈ℓ) are called the transition maps, or change of coordinate 

maps.

Example 5.1

ℝ𝑛 is an 𝑛-manifold, we can use one chart 𝜑 : ℝ𝑛 → ℝ𝑛 where 𝜑 is the identity map

Example 5.2

Any 𝑛-dimensional real vector space 𝑋 is an 𝑛-manifold: choose a basis {𝑢1, …, 𝑢𝑛} for 𝑋, and 

define 𝜑 : 𝑋 → ℝ𝑛 by 𝜑(∑ 𝑡𝑘𝑢𝑘) = 𝑡

Example 5.3

Any open subset of an 𝑛-manifold is an 𝑛-manifold. For example, the vector space 𝑀𝑛(ℝ) of 

𝑛 × 𝑛 matrices is an 𝑛2-dimensional and GL𝑛(ℝ) is an open set in 𝑀𝑛(ℝ).

Example 5.4

The 𝑛-sphere 𝕊𝑛 = {𝑥 ∈ ℝ𝑛+1 | ‖𝑥‖ = 1} is a compact 𝑛-manifold: we can choose two charts let 

𝑝 = 𝑒𝑛+1 = (0, …, 0, 1) then the stereographic projections 𝜑 : 𝕊𝑛 ∖ {𝑝} → ℝ𝑛 and 

𝜓 : 𝕊𝑛 ∖ {−𝑝} → ℝ𝑛 are homeomorphisms.

Example 5.5

When 𝑋 is an 𝑛-manifold and 𝑌  is an 𝑚-manifold, the product 𝑋 × 𝑌  is an (𝑛 + 𝑚)-manifold.

Theorem 5.1

Two polygonalizations of a compact 2-manifold 𝑋 have the same Euler characteristic.
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6 Fundamental Group

Definition 6.1

Let 𝑋 be a topological space with 𝑎, 𝑏 ∈ 𝑋. Recall that a path from 𝑎 to 𝑏 in 𝑋 is a continuous 

map 𝛼 : [0, 1] ⊆ ℝ → 𝑋 with 𝛼(0) = 𝑎 and 𝛼(1) = 𝑏. A loop at 𝑎 in 𝑋 is a path from 𝑎 to 𝑎. 

Given two paths 𝛼 and 𝛽 from 𝑎 to 𝑏 in 𝑋, an (endpoint-fixing) homotopy from 𝛼 to 𝛽 in 𝑋 is a 

continuous map 𝐹 : [0, 1] × [0, 1] → 𝑋 such that 𝐹(0, 𝑡) = 𝛼(𝑡) and 𝐹(1, 𝑡) for all 𝑡 ∈ [0, 1] and 

𝐹(𝑠, 0) = 𝑎 and 𝐹(𝑠, 1) = 𝑏 for all 𝑠 ∈ [0, 1]. We say that 𝛼 is homotopic to 𝛽 in 𝑋 and we write 

𝛼 ∼ 𝛽, when there exists a homotopy from 𝛼 to 𝛽 in 𝑋.

Theorem 6.1

Homotopy equivalence is an equivalence relation on the set of all paths from 𝑎 to 𝑏 in a 

topological space 𝑋.

Definition 6.2

For a topological space 𝑋 and a point 𝑎 ∈ 𝑋, we let 𝜋1(𝑋, 𝑎) be the set of equivalence classes of 

loops at 𝑎 in 𝑋 under homotopy equivalence.

Definition 6.3

For a topological space 𝑋 with 𝑎, 𝑏, 𝑐 ∈ 𝑋, the constant loop 𝜅𝑎 at 𝑎 in 𝑋 is the map 

𝜅𝑎 : [0, 1] → 𝑋 given by 𝜅𝑎(𝑡) = 𝑎 for all 𝑡 ∈ [0, 1]. For a path 𝛼 in 𝑋 from 𝑎 to 𝑏, the inverse 

path 𝛼−1 in 𝑋 from 𝑏 to 𝑎 is the map 𝛼−1 : [0, 1] → 𝑋 given by (𝑎−1)(𝑡) = 𝛼(1 − 𝑡). For a path 

𝛼 in 𝑋 from 𝑎 to 𝑏 and a path 𝛽 in 𝑋 from 𝑏 to 𝑐, the product path 𝛼𝛽 in 𝑋 from 𝑎 to 𝑐 is the 

map 𝛼𝛽 : [0, 1] → 𝑋 given by

(𝛼𝛽)(𝑡) = {
𝛼(2𝑡) 0 ≤ 𝑡 ≤ 1

2
𝛽(2𝑡) − 1 1

2 ≤ 𝑡 ≤ 1

Theorem 6.2

For a topological space 𝑋 with 𝑎 ∈ 𝑋, 𝜋1(𝑥, 𝑎) is a group with identity 1 = [𝜅𝑎] and with 

[𝛼]−1 = [𝛼−1] and with [𝛼][𝛽] = [𝛼𝛽]. This group is called the fundamental group (or the first 

homotopy group) of 𝑋 at 𝑎. Indeed we have the following

1. For paths 𝛼, 𝛽 from 𝑎 to 𝑏, if 𝛼 ∼ 𝛽 then 𝛼−1 ∼ 𝛽−1

2. For paths 𝛼, 𝛽 from 𝑎 to 𝑏 and paths 𝛾, 𝛿 from 𝑏 to 𝑐 if 𝛼 ∼ 𝛽 and 𝛾 ∼ 𝛿, then 𝛼𝛾 ∼ 𝛽𝛿.

3. For a path 𝛼 from 𝑎 to 𝑏, 𝜅𝑎𝛼 ∼ 𝛼 and 𝛼𝜅𝑏 ∼ 𝛼.

4. For a path 𝛼 from 𝑎 to 𝑏, 𝛼𝛼−1 ∼ 𝜅𝑎 and 𝛼−1𝛼 ∼ 𝜅𝑏.

5. For a path 𝛼 from 𝑎 to 𝑏, and a path 𝛽 from 𝑏 to 𝑐, and a path 𝛾 from 𝑐 to 𝑑, we have 

(𝛼𝛽)𝛾 ∼ 𝛼(𝛽𝛾)

The Fundamental Group of 𝕊1

Answer: 𝜋1(𝕊1, 1) = ⟨𝜎⟩ ≅ ℤ where 𝜎 : [0, 1] → 𝕊1 is given by 𝜎(𝑡) = 𝑒𝑖2𝜋𝑡
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Theorem 6.3 Polar Coordinate Representations

1. (Path Lifting)

Let 𝛼 : [0, 1] → ℂ∗ be a continuous map with 𝛼(0) = 𝑝. Choose 𝜃0 ∈ ℝ so that 𝑝 = |𝑝|𝑒𝑖𝜃0  

(𝜃0 is unique up to an integer multiple of 2𝜋). Then there exist unique continuous maps 

𝑟, 𝜃 : [0, 1] → ℝ with 𝑟(𝑡) > 0 for all 𝑡 ∈ [0, 1] and with 𝜃(0) = 𝜃0, such that 

𝛼(𝑡) = 𝑟(𝑡)𝑒𝑖𝜃(𝑡) for all 𝑡 ∈ [0, 1]
2. (Homotopy Lifting)

Let 𝐹 : [0, 1] × [0, 1] → ℂ∗ be a continuous map with 𝐹(0, 0) = 𝑝. Choose 𝜃0 ∈ ℝ such 

that 𝑝 = |𝑝|𝑒𝑖𝜃0 . Then there exist unique continuous maps 𝑅, Θ : [0, 1] → ℝ with 

𝑅(𝑠, 𝑡) > 0 for all 𝑠, 𝑡 and with Θ(0, 0) = 𝜃0 such that 𝐹(𝑠, 𝑡) = 𝑅(𝑠, 𝑡)𝑒𝑖Θ(𝑠,𝑡) for all 𝑠, 𝑡.

Note

1. For 𝛼 as above, if 𝛼 is differentiable or 𝒞︀1 or piecewise 𝒞︀𝑘 etc, then so are the maps 𝑟 and 𝜃.

2. For a continuous map 𝛼 : [𝑎, 𝑏] ⊆ ℝ → ℂ ∖ {𝑤} with 𝛼(𝑎) = 𝑝 = |𝑝|𝑒𝑖𝜃0  there exist unique 

continuous maps 𝑟, 𝜃 : [𝑎, 𝑏] ⊆ ℝ → ℝ with 𝑟(𝑡) > 0 for all 𝑡 ∈ [𝑎, 𝑏] and with 𝜃(𝑎) = 𝜃0, 

such that 𝛼(𝑡) = 𝑤 + 𝑟(𝑡) + 𝑒𝑖𝜃(𝑡) for all 𝑡 ∈ [𝑎, 𝑏].
3. For a continuous map 𝛼 : [𝑎, 𝑏] ⊆ ℝ → ℂ ∖ {𝑤} with

𝛼(𝑡) = 𝑤 + 𝑟(𝑡)𝑒𝑖𝜃(𝑡)

= 𝑤 + 𝜌(𝑡)𝑒𝑖𝜑(𝑡)

with 𝑟, 𝜌, 𝜃, 𝜑 continuous. 𝑟(𝑡) > 0, 𝜌(𝑡) > 0 for all 𝑡. 𝜃(𝑎) = 𝜃0, 𝜑(𝑎) = 𝜃0 + 2𝜋𝑛 then by 

uniqueness,

𝜌(𝑡) = 𝑟(𝑡) for all 𝑡 ∈ [𝑎, 𝑏]

and

𝜑(𝑡) = 𝜃(𝑡) + 2𝜋𝑛 for all 𝑡 ∈ [𝑎, 𝑏]

Definition 6.4

Let 𝛼 : [𝑎, 𝑏] ⊆ ℝ → ℂ ∖ {𝑤} be continuous. We define the winding number wind(𝛼, 𝑤), of 𝛼 

about 𝑤 as follows:

write 𝛼(𝑡) = 𝑤 + 𝑟(𝑡)𝑒𝑖𝜃(𝑡) with 𝑟, 𝜃 : [𝑎, 𝑏] ⊆ ℝ → ℝ continuous with 𝑟(𝑡) > 0 for all 𝑡 ∈ [𝑎, 𝑏]. 
Then define

wind(𝛼, 𝑤) = 𝜃(𝑏) − 𝜃(𝑎)
2𝜋

(and note that this does not depend on the choice of 𝜃(𝑎) = 𝜃0 by remark 3).
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Note

1. For 𝛼 as above, if 𝛼(𝑏) = 𝛼(𝑎) then wind(𝛼, 𝑤) ∈ ℤ
2. For paths 𝛼, 𝛽 : [0, 1] → ℂ ∖ {𝑤} in ℂ ∖ {𝑤}, for 𝑝 ≠ 𝑤, we have wind(𝜅𝑝, 𝑤) = 0 and 

wind(𝛼−1, 𝑤) = − wind(𝛼, 𝑤) and if 𝛼(0) = 𝑎, 𝛼(1) = 𝑏 = 𝛽(0), 𝛽(1) = 𝑐 then 

wind(𝛼𝛽, 𝑤) = wind(𝛼, 𝑤) + wind(𝛽, 𝑤)
3. When 𝛼 : [𝑎, 𝑏] ⊆ ℝ → ℂ ∖ {𝑤} is piecewise 𝒞︀1 (which means 𝛼 is continuous and 𝛼′ is 

piecewise continuous so for 𝛼(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡), 𝑥 and 𝑦 are piecewise 𝒞︀1) we can calculate 

wind(𝛼, 𝑤) using an integral as follows:

Definition 6.5

For a piecewise continuous (or integrable) map 𝑔 : [𝑎, 𝑏 ⊆ ℝ → ℂ] given by 𝑔(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑦). 
We define

∫
𝑏

𝑡=𝑎
𝑔 = ∫

𝑏

𝑡=𝑎
𝑔(𝑡) d𝑡 ≔ ∫

𝑏

𝑡=𝑎
𝑥(𝑡) d𝑡 + 𝑖 ∫

𝑏

𝑡=𝑎
𝑦(𝑡) d𝑡

Definition 6.6

When 𝛼 : [𝑎, 𝑏] ⊆ ℝ → 𝑈 ⊆ ℂ is piecewise 𝒞︀1 and 𝑓 : 𝑈 ⊆ ℂ → ℂ is continuous, we define

∫
𝛼

𝑓 = ∫
𝛼

𝑓(𝑧) d𝑧 ≔ ∫
𝑏

𝑡=𝑎
𝑓(𝛼(𝑡))𝛼′(𝑡) d𝑡

Given a piecewise 𝒞︀1 map 𝛼 : [𝑎, 𝑏] ⊆ ℝ → ℂ ∖ {𝑤}, writing 𝛼 as 𝛼(𝑡) = 𝑤 + 𝑟(𝑡)𝑒𝑖𝜃(𝑡) with 𝑟, 𝜃 as 

usual and by letting 𝑓(𝑧) = 1
𝑧−𝑤  (which is continuous on ℂ ∖ {𝑤}) we have

∫
𝛼

𝑓 = ∫
𝛼

d𝑧
𝑧 − 𝑤

= ∫
𝑏

𝑡=𝑎
𝑓(𝛼(𝑡))𝛼′(𝑡) d𝑡 = ∫

𝑏

𝑡=𝑎

𝛼′(𝑡)
𝛼(𝑡) − 𝑤

d𝑡 = ⋯ = ln 𝑟(𝑏)
𝑟(𝑎)

+ 𝑖2𝜋 wind(𝛼, 𝑤)

In particular, when 𝛼(𝑎) = 𝛼(𝑏) so that 𝑟(𝑎) = 𝑟(𝑏) and wind(𝛼, 𝑤) ∈ ℤ, we have

wind(𝛼, 𝑤) = 1
2𝜋𝑖

∫
𝛼

d𝑧
𝑧 − 𝑤

Theorem 6.4

Let 𝐼  be an interval in ℝ with 1 ∈ 𝐼 ⊆ ℝ+ = (0, ∞) and let

𝐴 = {𝑧 ∈ ℂ | ‖𝑧‖ ∈ 𝐼} = {𝑟𝑒𝑖𝜃 ∈ ℂ | 𝑟 ∈ 𝐼, 𝜃 ∈ ℝ}

Then 𝜋1(𝐴, 1) = ⟨[𝜎]⟩ ≅ ℤ where 𝜎 : [0, 1] → 𝐴 is given by 𝜎(𝑡) = 𝑒𝑖2𝜋𝑡

Proof: We claim that for loops 𝛼 and 𝛽 at 1 in 𝐴, we have

𝛼 ∼ 𝛽 ⟺ wind(𝛼, 0) = wind(𝛽, 0)

☐
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Proposition 6.5

Properties of Fundamental Group

Note

Let 𝑋 be a topological space with 𝑎 ∈ 𝑋. Let 𝑃  be the path component of 𝑎 in 𝑋.

1. If 𝛼 is a path from 𝑎 to 𝑏 in 𝑋 then 𝑏 ∈ 𝑃  and indeed 𝛼(𝑡) ∈ 𝑃  for all 𝑡 ∈ [0, 1].
2. If 𝛼 and 𝛽 are two paths from 𝑎 to 𝑏 in 𝑋 and 𝐹  is a homotopy from 𝛼 to 𝛽 in 𝑋, then 

𝐹(𝑠, 𝑡) ∈ 𝑃  for all 𝑠, 𝑡 (because [0, 1] × [0, 1] is convex, hence path connected and 𝐹  is 

continuous)

It follows that 𝜋1(𝑋, 𝑎) = 𝜋1(𝑃 , 𝑎)

Theorem 6.6

Let 𝛾 be a path from 𝑎 to 𝑏 in 𝑋. Then the map

𝜑𝛾 : 𝜋1(𝑋, 𝑎) ⟶ 𝜋1(𝑋, 𝑏)

𝜑𝛾([𝛼]) = [𝛾−1𝛼𝛾]

is a well defined group isomorphism (called a change of basepoint)

Definition 6.7

For a topological space 𝑋 we say that 𝑋 is simply connected when 𝑋 is path connected and 

𝜋1(𝑋) = 0 (to be precise 𝜋1(𝑋, 𝑎) = {[𝜅𝑎]} for some, hence any 𝑎 ∈ 𝑋).

Example 6.1

Every convex set 𝑋 in a normed linear space is simply connected (given any loop 𝛼 at 𝑎 in 𝑋, 

the map 𝐹[0, 1] × [0, 1] → 𝑋 given by 𝐹(𝑠, 𝑡) = 𝑎 + 𝑠(𝛼(𝑡) − 𝑎) = 𝑎(1 − 𝑠) + 𝑠𝛼(𝑡) is a 

homotopy from 𝜅𝑎 to 𝛼 in 𝑋).

6.1 Invariance Under Homeomorphism

Definition 6.8

A based topological space is a pair (𝑋, 𝑎) where 𝑋 is a topological space and 𝑎 ∈ 𝑋. We write 

𝑓 : (𝑋, 𝑎) → (𝑌 , 𝑏) to indicate that 𝑓 : 𝑋 → 𝑌  with 𝑓(𝑎) = 𝑏.

Definition 6.9

Given a continuous map 𝑓 : (𝑋, 𝑎) → (𝑌 , 𝑏), the map 𝑓∗ : 𝜋1(𝑋, 𝑎) → 𝜋1(𝑌 , 𝑏) given by 

𝑓∗([𝛼]) = [𝑓 ∘ 𝛼] is a well defined group homomorphism which we call the homomorphism of 

fundamental groups induced by 𝑓 , or the pushforward of 𝑓 .
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Definition 6.10

For a set 𝑆, we write id𝑆  to be the identity map on 𝑆 (that is the map id𝑆 : 𝑆 → 𝑆 given by 

id𝑆(𝑥) = 𝑥 for all 𝑥 ∈ 𝑆).

Theorem 6.7

For a based topological space (𝑋, 𝑎):
1. (id𝑋)∗ = id𝜋1(𝑋,𝑎)
2. For continuous maps 𝑓 : (𝑋, 𝑎) → (𝑌 , 𝑏) and 𝑔 : (𝑌 , 𝑏) → (𝑍, 𝑐), we have 

(𝑔 ∘ 𝑓)∗ = 𝑔∗ ∘ 𝑓∗

Remark

Using the language of category theory, we have a covariant 𝐹  from the category of based 

topological spaces (with continuous maps of based topological spaces) to the category of groups 

(with group homomorphisms) given by

𝐹(𝑋, 𝑎) = 𝜋1(𝑋, 𝑎)

and for a continuous map 𝑓 : (𝑋, 𝑎) → (𝑌 , 𝑏),

𝐹(𝑓) = 𝑓∗ : 𝐹 (𝑋, 𝑎) → 𝐹(𝑌 , 𝑏)

Theorem 6.8

If 𝑓 : (𝑋, 𝑎) → (𝑌 , 𝑏) is a homeomorphism, then 𝜋1(𝑋, 𝑎) ≅ 𝜋1(𝑌 , 𝑏), indeed the map 

𝑓∗ : 𝜋1(𝑋, 𝑎) → 𝜋1(𝑌 , 𝑏) is an isomorphism.

Exercise 6.1.1

For based spaces (𝑋, 𝑎) and (𝑌 , 𝑏), prove that

𝜋1(𝑋 × 𝑌 , (𝑎, 𝑏)) ≅ 𝜋1(𝑋, 𝑎) × 𝜋1(𝑌 , 𝑏)
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6.2 Invariance Under Homotopy of Spaces

Definition 6.11

1. For continuous maps 𝑓, 𝑔 : 𝑋 → 𝑌  a (free) homotopy from 𝑓  to 𝑔 is a continuous map 

𝐹 : [0, 1] × 𝑋 → 𝑌  such that

𝐹(0, 𝑥) = 𝑓(𝑥) and 𝐹(1, 𝑥) = 𝑔(𝑥) for all 𝑥 ∈ 𝑋

When such a map exists, we say that 𝑓  and 𝑔 are (freely) homotopic, and we write 𝑓 ∼ 𝑔.

2. For continuous maps 𝑓, 𝑔 : (𝑋, 𝑎) → (𝑌 , 𝑏) a homotopy from 𝑓  to 𝑔 relative to 𝑎 is a 

continuous map 𝐹 : [0, 1] × 𝑋 → 𝑌  such that

𝐹(0, 𝑥) = 𝑓(𝑥) and 𝐹(1, 𝑥) = 𝑔(𝑥) for all 𝑥 ∈ 𝑋

and

𝐹(𝑠, 𝑎) = 𝑓(𝑎) = 𝑔(𝑎) = 𝑏 for all 𝑠 ∈ [0, 1]

When such a homotopy exists, we say 𝑓  and 𝑔 are homotopic relative to 𝑎, and we write 

𝑓 ∼ 𝑔 (rel. 𝑎)
3. For topological spaces 𝑋 and 𝑌  and for 𝐴 ⊆ 𝑋, and for continuous maps 𝑓, 𝑔 : 𝑋 → 𝑌  a 

homotopy from 𝑓  to 𝑔 relative to 𝐴 is a continuous map 𝐹 : [0, 1] × 𝑋 → 𝑌  such that

𝐹(0, 𝑥) = 𝑓(𝑥) and 𝐹(1, 𝑥) = 𝑔(𝑥) for all 𝑥 ∈ 𝑋

and

𝐹(𝑠, 𝑎) = 𝑓(𝑎) = 𝑔(𝑎) for all 𝑎 ∈ 𝐴 and 𝑠 ∈ [0, 1]

when such a homotopy exists, we say that 𝑓  and 𝑔 are homotopic relative to 𝐴 and write 

𝑓 ∼ 𝑔 (rel. 𝐴).

Invariance Under Homotopy of Spaces 43


	1 Topological Spaces and Continuous Maps
	1.1 Elementary Topology
	1.2 Topological Bases
	1.3 Subspaces
	1.4 Continuous Maps
	1.5 Examples of Homeomorphisms

	2 Examples of Topological Spaces
	2.1 Products of Topological Spaces
	2.2 Quotient Spaces

	3 Connected, Path-Connected and Compact Spaces
	3.1 Connected Components
	3.2 Path-Connectedness
	3.3 Compactness

	4 Countability and Separation Axioms
	5 Topological Manifolds
	6 Fundamental Group
	6.1 Invariance Under Homeomorphism
	6.2 Invariance Under Homotopy of Spaces


