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1 Topological Spaces and Continuous Maps

1.1 Elementary Topology

Given an inner product on an R-vector space (-, -), one can define a norm |z| = /(z, x). Given a
norm, one can define a metric d(z,y) = |z — y|. Given a metric d on a set X, one can define open sets
in X:

givena € X andr > 0, B(a,r) := {x € X | d(x,a) < r}. Then for A C X, we say A is open in X
when Va € A3r > 0 such that B(a,r) C A. Equivalently, for all a € A, there is b € X, r > 0 such that
a € B(b,r) C A

Remark

The set of open sets on a metric space is called the metric topology on X.

Open sets in a metric space satisfy the following:
1. () and X are open
2. arbitrary unions of open sets are open
3. finite intersections of open sets are open

For a set of sets .S, the union of S is

UJS:={z]|34eS,zcA}=]4
AeS

In the case that S # (), the intersection of S is

(S:={z|vVAeS,zcAl=[]4
AeS

Note

(S would contain all elements as the condition VA € () would be vacuously satisfied. If we are
given a universal set X, and S is known to be a set of subsets of X, then [0 = X.

Let X be aset. T C P(X) is called a topology on X if
1.0, XeT
2. If S C T is nonempty, then | JS € T
3. If S C 7 is nonempty and finite, then (S € T

The elements of T are called the open sets of X. The closed sets are the compliments of the open

sets.

Elementary Topology 2
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Remark

To show 3 holds, it suffices to show the intersection of 2 open sets is open (by induction)

If X is a set, and T is a topology on X, then (X, T') is called a topological space

Remark

When f : X — Y is a map between metric spaces, f is continuous iff f~1(V) is open in X for
every openset V C Y.

For amap f : X — Y between topological spaces, we say that f is continuous when f~(V) is
open in X for every openset V C Y.

if f: ACR"®™ — B C R™ is an elementary function, then f is continuous.

When S, T are topologies on X with S C T', we say that S is coarser than 7" and T’ is finer than
S. When S C T, we use strictly coarser/finer.

{0, X} is a topology on X called the trivial topology

P(X) is a topology on X called the discrete topology

When X =0, 7 CP(X) =7 C{0} =T =0V T = {0}. Thus the only topology on @ is {0}.

When X = {a} the only topology is T = {0, {a}}

Find all topologies on the 2 and 3 element sets.

Elementary Topology 3
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Let X be a topological space. Let A C X.

1.

Note

P R

The interior of A (in X) denoted by int(A) is the union of all open sets in X which are
contained in A.

. The closure of A denoted A is the intersection of all closed sets in X which contain A.

. The boundary of A, denoted by O A, given by A = A\ int(A)

The set of closed sets in a topological space is closed under arbitrary intersections and under
finite unions. In particular (), X are closed

Theorem 1.1

Let X be a topological space, A C X.
1.

int(A) is open, and is the largest open set which is contained in A
A is closed, and is the smallest closed set which contains A

Ais open iff A = int(A)

Ais closed iff A = A

int(int(A)) = int(A)

A=A

Let X be a topological space, let A C X, leta € X.

1.
2.

3.

Elementary Topology

We say that a is an interior point of A when a € A and there is an open set U such that
acUCA

We say that a is a limit point of A when for every open set U 3 a we have

UnN (AN {a}) # 0. The set of limit points of A is denoted by A’

We say that a is a boundary point of A when every open set U > a, we have U N A # ()
and U N A° # ()
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Theorem 1.2

Let X be a topological space and let A C X.
1. int(A) is equal to the set of all interior points
2. Fora € X,

a€A = ae€A\{a}
3. Aisclosediff A’ C A
4. A=AUA
5. A is the disjoint union
A =int(A) UOA
6. 0A is equal to the set of boundary points of A

1.2 Topological Bases

Theorem 1.3

Let X be a set. Then the intersection of any set of topologies on X is also a topology on X.

Proof: Let {7, } be a collection of topologies on X. Let 7 =[] 7,

1. Since X,0 € T, forall &« € I. We have X, € T

2. Let {U;} C T.Foralla € I, we have each U; € 7,,. Thus |, U; € T, = |, U; € T as desired.

3. Let Uy, ..., U, € 7. Then again for all @ € I, we have each U; € 7. Thus

N Ul =M, UeT

Corollary 1.4

topologies on X containing §.

This topology T is called the topology on X generated by §

When X is a set and S is any set of subsets of X (that is S C P(X)), there is a unique smallest
(coarsest) topology 7 on X which contains §. Indeed T is the intersection of (the set of) all

Let X be a set. A basis of sets on X is a set B of subsets of X (So B C P (X)) such that

1. Bcovers X, thatis| JB =X

2. Forevery C,D € Banda € C N D. Thereis B € B suchthata € BC CND.

When 3 is a basis of sets in X and T is the topology on X generated by B, we say that B is a

basis for T . The elements in B are called basic open setsin X.

Topological Bases
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Theorem 1.5 Characterization of Open Sets in Terms of Basic Open Sets

Let X be a topological space, Let B be a basis for the topology on X.
1. For A C X, A is open iff for every a € A, thereis B € B suchthata€e BC A~
2. The open sets in X are the unions of (sets of) elements in B

Equivalently,
1. T={ACX|Va€e A,3BeBaec BCA}
2. T={C|CCB}

Proof: Let T be the topology on X (generated by B). Let § be the set of all sets A C X with property *
(Va € AGB € B :a € B C A). And let X be the set of (arbitrary) unions of (sets of) elements in 3.
Recall that T is the intersection of the set of all topologies on X which contain B. Note that § contains
B (obviously). Let us show that § is a topology on X. We have () € § vacuously and X € § because B
covers X (given a € X, we can choose B € B with a € B). When U,, € S for every k € K (where K is
any index set). Let a € Uk U,. Choose ¢ € K so that a € U,. Since U, € 8, we can choose B € B so
thata € B C U,. Since U, C |, Uy, we have a € B C |J,_U,. Thus |, Uj, satisfies *, hence J, U, € &
as required. Suppose U,V € S Leta € UN V. Since U € § we can choose C' € Bwitha € C CU.
Since V' € &, we can choose D € B witha € D C V. Since Bisabasis, C,D € Banda € C N D, we
can choose B € B witha € B C C N D. Then we have

aceBCCNDCUNV

Thus U NV satisfies * so that U NV € & as required. Thus & is a topology on X containing B, hence
T C 8. Letus showthat § C Rlet U € 8. For each a € U, choose B, € B witha € B, C U. Then we
have

U=|JB,e®

aclU

Thus § C R. Finally note that X C T because if U = Uk B, with B;, € B, theneach B, € 7,and 7 is
a topology, so

U=|]B,eT
keK
0
Theorem 1.6 Characterization of a Basis in terms of the Open Sets

Let X be a topological space with topology 7. Let B C T. Then B is a basis for T iff
VUe€TVacU3IBeB acBCU.*

Proof:If B is a basis for T, then * holds by part 1 of the previous theorem. Suppose * holds. Let us show
that B is a basis of sets in X. Note that B covers X since, taking U = X in * we have

Va € XdB € B a € B C X. Alsonote that given C, D € B and a € C N D, then by taking
U=CNDin " (noting that C,D € BC T sothat U = CN D € T) we can choose B € B with

a € B C C'ND.Thus B is a basis of sets in X. It remains to show that T is the topology generated by
B. Let S be the topology generated by B. By part 1 of the previous theorem, S is the set of all unions of

Topological Bases 6
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elements in B. Also § is the smallest topology which contains B. Since B C T and 7 is a topology, we
have § C T . Also we have 7 C & because given U € T, by property *, for each a € U, we can choose
B, € Bwitha € B, C U, and then we have U = Uan B, € & since it is a union of elements in B [

When X is a metric space, the set B of all open balls in X is a basis for the metric topology on
X.

Remark

We can use a basis for testing various topological properties:
When X is a topological space, and B is a basis for the topology on X,and A C X and a € X.
Then

a€int(A) <= 3IJBe€Bwithae BCA

ac€ A= VYBecBwithac B BNA+(
a€ A<= VBeBwithaeB (B\{a})NA+0
a €A« VBeBwithae B BNA#*0and BN(X\A)#0

A topological space X is called Hausdorff when for all a,b € X with a # b, there exist disjoint
open sets U and V in X witha € U and b € V.

Metric spaces are Hausdorff

Topological Bases 7
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1.3 Subspaces

Let Y be a topological space with topology &, and X C Y be a subset. Let
T:={VnNnX|VeS}

Then T is a topology on X:

Indeed) € SsodNX =0T andY € SsoY NX =X € T.If K is any index set and

U, € T for each k € K, then for each k € K we can choose V}, € § such that U, = V,, N X and
then we have

UUk: U(%ﬂX)

keK keK

= (U Vk)ﬁXefJ’
keK

were Vi € 8. Similarly, when K is finite and U, € T for each k € K we have
N o U, € T The topology T on X is called the subspace topology on X (inherited from the
topology on Y).

since | J

Theorem 1.7

Let Y be a topological space, let € be a basis for the topology on Y. Let X C Y be a subset. Then
the set

B={CnNnX|CecC}

is a basis for the subspace topology on X.

Proof: Exercise ]

Theorem 1.8

Let Z be a topological space, let Y C Z be a subspace and X C Y be a subset. Then the subspace
topology on X inherited from Y is equal to the subspace topology on X inherited from Z.

Proof: Exercise ]

Theorem 1.9

Let Y be a metric space, (using the metric topology) and let X C Y. Then the subspace topology
on X (inherited from the topology on Y') is equal to the metric topology on X using the metric

on X obtained by restricting the metricon Y.

Proof: Exercise [

Subspaces 8
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1.4 Continuous Maps

Let X,Y be topological spaces.
1. For f: X = Y and a € X, we say that f is continuous at a when for every openset V C Y
with f(a) € V, there exists an open set U C X witha € U C f~1(V).

2. We say that f is continuous (in or on X) when for every open set V C Y, f~1(V) is open in
X.

3. A homeomorphism from X to Y is is a bijective map f : X — Y such that both f and its
inverse ! : Y — X are continuous. We say that X and Y are homeomorphic, and we
write X = Y, when there exists a homeomorphism f : X — Y. (and we remark that
f':Y — X is also a homeomorphism).

Theorem 1.10

Constant maps and inclusion maps are continuous.

Proof:For f: X — Y givenby f(z) =c € Y forallz € X. When V isopenin Y,

_ XifeeV
/ l(v):{@ifc¢v

When X C Y isasubspace and f : X — Y is given by f(z) = x for all z € X, when V is openin Y.
V) ={z e X | f(z) eV}
={zeX|zeV}
=VnX
which is open in X. (when X uses the subspace topology) ]

Remark

When Y is a topological space and X C Y we shall assume, unless otherwise noted, that X uses
the subspace topology.

Theorem 1.11 Equivalent Definitions of Continuity

Let f : X — Y be a map between topological spaces
1. f is continuous iff f is continuous at every a € X
2. f is continuous iff for every closed set K C Y, f~1(K) is closed in X.
3. If € is a basis for the topology on Y then f is continuous iff for every C € €, f~1(C) is
open in X.

Proof of 1: Suppose f is continuous on X. Let a € X. Let V be an open setin Y with f(a) € V. Let
U= f1(V), then f~1(V) is open, since f is continuous and a € U C f~1(V). Suppose, conversely,
that f is continuous at every a € X. Let V be an open set in Y. For each a € f~1(V) since f is
continuous at a with f(a) € V, we can choose an open set U, in X witha € U, C f~1(V). Then

Continuous Maps 9
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= U U

acf~1(V)

which is open in X, since it is a union in open sets in X. O

Theorem 1.12

Let f: X —-Y,g:Y — Z be continuous maps between topological spaces, then the composite
map h = go f: X — Z is continuous.

Proof: Show that b=} (W) = f~1 (g7} (W)) O

Remark

Homeomorphism of topological spaces behaves like an equivalence relation on the class of all
topological spaces. For topological spaces X,Y, Z

1. X = X (since id x is a homeomorphism - a special case of the inclusion map)

2. f X 2Y thenY =~ X (when f : X — Y is a homeomorphism, sois f~!: Y — X)

3. f XY xZthenX=Z@Gff: X —=Y,9:Y — Z are homeomorphisms then so is

gef)

Theorem 1.13 Restriction of Domain and Restriction or Expansion of Codomain

Let X,Y, Z be topological spaces. Suppose f : X — Y is continuous.
1. For any subspace A C X, the restriction f|, : A — Y is continuous.
2. IfY C Z is a subspace then f : Y — Z is continuous and if B C Y with f(X) C B, then
f : X — B is continuous.

Proof: Exercise ]

Let f : X — Y be a map between topological spaces
1 IfX = UkeK U, where each U, is open in X and if each restriction map f|Uk U, =Y is
continuous (where U, is using the subspace topology), then f is continuous.
2. f X = C, U--UC, where each Cj is closed in X, and if each restriction f|c, : Gy — Yis
continuous, then f is continuous.

Proof of 1: Suppose X = UkeK U, where each U, is open in X and suppose each restriction f|Uk is
continuous. Let V' C Y be open. Note that

Continuous Maps 10
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V) ={ze X | f(z) €V}
= J{zel [ f@) eV}

keK

= U{xEUk‘ﬂUk(x)EV}

keK

= flot(v)
keK

For each k € K| since f[;; is continuous, we know that f ]5}1 (V') is open in U,. Since U, is using the
subspace topology, we can choose an open W), in X such that f]a; (V) = W, N Uy. This is open in X
since W, and U,, are both open in X. Since f~!(V) = UkeK f\ﬁi (V') it is a union of open sets in X, so
it is open in X. Thus f is continuous. ]
Proof of 2: Exercise. First show that for f : X — Y, f is continuous iff f~1(C) is closed in X for every
closed set C'in Y. And, show that when A C X C Y, A is closed in X (using the subspace topology
fromY)iff A= BN X for some closed set BinY. ]

2z <0
The map f : R — R given by f(z) = {m2 +>0 1S continuous.

1.5 Examples of Homeomorphisms

The circle
{(z,y) € R? ‘ z?+y? =1}

in R? is homeomorphic to the ellipse

{(xay) € R? A2 B2

<x—aﬁ+xy—w2:1}

in R?

R~(-1,1)CR

Examples of Homeomorphisms 11
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The standard unit n-sphere in R"*! is the set

§" = {z € R™* | |o] = 1}
Where p is the north pole

p=ey =(0,..,0,1) e S”

We have S \ {p} = R"

2 Examples of Topological Spaces

Let X be a set. We sometimes write X, to indicate that X is using the trivial topology

T, = {0, X }. We sometimes write X ; to indicate X is using the discrete topology T, = P(X).
We sometimes write X to indicate X is using the co-finite topology

T.={ACX|A=0or X\ A is finite}. Note the closed sets in X, are exactly the finite ones
and X.

When X is a metric space, we assume, unless otherwise indicated, that X uses the metric
topology. Sometimes, we might write X, to indicate that X is using the metric topology 7, ,.

When Y is a topological space, and X C Y, we assume, unless otherwise indicated, that X uses
the subspace topology. Sometimes, we might write X to indicate that X is using the subspace
topology 7,. When X C R", we shall assume, unless otherwise indicated, that X is using

Tm =7

Examples of Topological Spaces 12
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Let X be a set. A (strict, linear or total) order on X is a binary relation < on X such that
1. Forall z,y € X exactly one of the following holds:
a. r <y
b. x =y
cy<cw
2. Forallz,y,z € X,ifr <yandy < zthenzx < 2

An ordered set is a set X with an order <. When X is an ordered set, we also define <, >, > by
stipulating that for all z,y € X

r<y<=(r<yVze=y)
r>y<—=y<cx
r2>2yYy<=y<czx

Remark

In an ordered set X we can define an upper bound, a lower bound, the supremum, the infimum,
the maximum, and the minimum of a subset A C X.

Let X be an ordered set and A C X, M = max(A) when M € A with M > z for all x € A.
Similarly, m for minimum.

When X is an ordered set, we have the following subsets which are called intervals in X. For
a,b € X with a < b we have

(a,b) ={reX|a<xz<b}
(a,b):=={xr e X |a<z<b}
[a,b) :={x € X |a <z <b}
[a,b] :=={x € X |a <z <b}

Let X be an ordered set. The order topology on X is the topology 7, which is generated by the
basis B, of sets in X which consist of the following intervals:

+ (a,b) wherea,be X,a<b

+ (a, M] where M = max X and a € X with a # M (in the case that X has a maximum)

+ [m,b) where m = min X and b € X with b # m (in the case that X has a minimum)

We sometimes write X, to indicate that X is using the order topology T,

Examples of Topological Spaces 13
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Verify B, is a basis.

Let X be an ordered set the lower limit topology on X is the topology 7, generated by the basis
B, which consists of intervals of the form [a, b) where a,b € X with a < b we sometimes write
X, to indicate that X is using the lower limit topology.

Note

on R, 7, is not equal to 7,,. Note that when a,b € R with a < b,

m

o 1 1
b) = —,b) where — < b—
(a,b) ngm[a—l—n, )W ere — < a

which is open in R,. So we have 7, C 7,

Let X = (0,1) U {2} C R. Note that T, # 7,,, = T, on X. (Where X uses the standard order
inherited from R). For example {2} is open in X,,. But is not open in X, because any open set in
X, which contains 2, must contain a basic open set B with 2 € B. So it must contain a set of the
form

B = (a,2]x = (a,1) U {2} where a € (0,1)

So they include elements other than 2

When X is an ordered set, the dictionary (or lexicographic) order on X? is given by
(a,b) < (c,d) <= (a=cand b<d)ora<c

Note that on R?, the order topology 7, is not equal to the standard metric topology 7.

2.1 Products of Topological Spaces

Let X,Y be sets, then the Cartesian product of X and Y is

XxY={(z,y)|z€eX,yeY}

Products of Topological Spaces 14
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Let K be a non-empty index set and let X, be a set for each k € K. Then the Cartesian product
of the (indexed set of) sets X, k € K

HXk:{x:K—) L X,

keK keK

z(k) € X, for all kEK}

and we write z(k) as x. In the case that K = {1, ..., n} we write
IT X =[] X=X xx X,
keK k=1

In the case that K = Z* we write
T X =] X = X1 x X, x -
keK k=1

In the case that K = {1,...,n} and X, = X for all kK € K, we also write

[[x=][X=XxXx-xX=X"
keK keK n times

In the case that K = Z*, and X, = X for all k € K, we also write
[[x=]]=xxXxx-=X¥
keK k=1
In the case that X is a vector space, we write
X* ={z = (z1,25...) € X¥ | z;, = 0 for all but finitely many k € Z*}

In this case X and X*“ are both vector spaces.
When X, is a set for each k € K, for each £ € K we have the projection map

Dy - H Xk: —>X£
keK

given by p,(z) = z, = z(¢). For any set Y, a function f : ¥’ — [[, _,- X determines, and is
determined by, its component functions

where f, = p, o fso f,(y) = f(y), = f(y)(¥)

Products of Topological Spaces 15
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When X, is a topological space for each k € K, there are two commonly used topologies on

erK Xi-

1. The box topology on [ | _— X, is the topology generated by the basis of sets of the form

HUkQHXk

keK keK

Where each U, is open in X,

2. The product topology on [ | e Sk 1s the topology generated by the basis of sets consisting
of the sets of the form [ rexc Uk where each Uy, is open in X, with Uy, = X, for all but
finitely many k € K.

Note
The above two proposed bases are indeed bases of sets because
(H Uk> N (H Vk> = [[W W)
keK keK keK

Also note that when K is finite, these two topologies are equal. When K is infinite, the box
topology is finer than the product topology.

Theorem 2.1

Let B, be a basis for X, for each k € K. Then the set of sets of the form

H B, where B, € B, for all k € K
keK

is a basis for the box topology on [ re i Xk» and the set of sets of the form

H B, where B, € B, U{X,} forall k € K
keK

with B, = X, for all but finitely many k € K is a basis for the product topology on [| — X.
Proof: Exercise ]

Theorem 2.2

For each k € K, let X, be a subspace of Y}, (using the subspace topology). Then the box topology
on erK X, is equal to the subspace topology on erK X, as a subspace of erK Y, using the
box topology, and the product topology on [ | rexc Xk 1s equal to the subspace topology on

I, X asasubspace of ][, .. ¥} using the product topology.

Products of Topological Spaces 16
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Theorem 2.3

Let Y be a topological space, and let X, be a topological space for each k € K, and let
f:Y—=TJ] werc k- Then when II e Sk uses the product topology, f is continuous if and only
if each component map f, : Y — X, is continuous.

Proof: Suppose that f is continuous, then (using either the box or product topologies on [ | e K X;)

each projection map p, : [| X, — X, is continuous because when U C X, is open,

keK

pH(U) = {CBE HXk

keK

:HUk

keK

T, = py(T) € U}

where

g JU ifk=1(
X, ifk+4

which is openin [ | ek X, (using either the box or product topology) It follows that each component
function f, is continuous because

fe=pgeof
Suppose, conversely, that each component map

fzpe°f3Y—>HXk

keK
is continuous, and that [ | ek X, is using the product topology. To show that f is continuous, it suffices
to show that f~*(B) is open in Y for every basic open set B in erK X,.. Let B be a basic open set (for
the product topology) on erK X,.Say B = erK U, where each U, is open in X, with U, = X, for
all but finitely many indices k € K. Let L C K be the finite set of all indices k¥ € K for which
U, # X,. We have

f(B) = {y €y

fly) € H Uk}

={yeY | fily)=fy) €Uy forall k € K}
={yeY | fily) €U, forall ke L}

= ﬂ fi ()

keL

Which is open in Y since it is a finite intersection of open sets in Y (with f;*(U})) is open in Y
because U, is open in X}, and f; : Y — X, is continuous. ]

Products of Topological Spaces 17



PMATH 367 FaLL 2025 JAKE EDMONSTONE

Remark

R® C ¢ Cl,Cl Cl, CRY

for 1 <p < g < 00. Recall that these norms induce different topologies.

Question: do any of the p-norms induce the box or product topology on R* C R¥?
Question: is there a norm or metric on R¥ which induces the box or product topology?

Remark

Also, we have the p-norms on R™. They all give the same topology on R™. More generally, when
X is a finite dimensional vector space, all norms on X induce the same topology on X. When
L: X —Y is alinear map between normed linear spaces, L is continuous iff | L, < oo iff
L(Bx(0,1)) is bounded in Y. And when X is finite dimensional, By (0, 1) is compact and
L(Bx(0,1)) is bounded, so L is continuous. In particular, when X is finite dimensional and
Ill1, ||2 are two norms on X,

idx « (X, [1) — (X, [2)

is continuous, and it is equal to its own inverse which is continuous, so id x is a
homeomorphism, so for a set U C X, U is open in (X, ||-|;) if and only if U is open in (X, ||||5)-
Consequently, every finite dimensional vector space X has a standard topology. (Pick a basis
{uq, ..., u, }, define

<Z wkuk’zykuk> = Zxkyk =Ty
So the map L : X — R" given by

L(Z xkuk) = Zxkek =z

is an inner product space isomorphism.) Then use the inner product to define a norm, a metric,
and a topology. The resulting topology doesn’t depend on the choice of basis.

2.2 Quotient Spaces

Let X be a set. Let ~ be an equivalence relation on X. For a € X, the equivalence class of a is
[a] ={z e X |a~z}

Recall distinct equivalence classes are disjoint, and X is the disjoint union of distinct equivalence
classes. The set of all equivalence classes is denoted by X /~ , is called the quotient set of X by

X/~ ={la] | a € X}

The map ¢ : X — X/~ given by =  [x] is called the quotient map.
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When X is a topological space, the quotient topology on X /~ is the topology obtained by
stipulating that for V C X/~ , V is open in X/~ if and only if ¢~ (V) is open in X.

Note

When V' C X/~ so V is a set of equivalence classes.
' (V)={zeX|qz) eV}
={reX|[z] eV}

= U la]

[z]eV

:UV

Remark

For sets X and Y,
1. When'Y is a topological space and X C Y is a subset, the subspace topology is the coarsest
topology on X for which the inclusion map 7 : X — Y is continuous

it V)={zeX|i(z)eV}={zeX|zeV}=VNX
2. When X and Y are both topological spaces, the product topology on X X Y is the coarsest

topology for which the two projection mapspy : X XY — X, py : X XY — Y are both
continuous

X (U)=UxY py(V)=VxX
3. When X is a topological space and ~ an equivalence relation on X, the quotient topology

on X/~ is the finest topology on X/~ for which the quotient map ¢ : X — X/~ is
continuous

Note

Let X be a set and ~ an equivalence relation on X. Note that any function g : X/~ — Y (where
Y is any set) determines and is determined by a function f : X — Y which is constant on
equivalence classes (meaning that for z,,z, € X if ; ~ z, then f(z,) = f(z,)) with g given

by g([z]) = f(z) and with f given by f = g ¢. So f(z) = g(q(x)) = g([z])

Theorem 2.4

Let X,Y be topological spaces. Let ~ be an equivalence relation on X. Let f : X/~ — Y. Let
g : X — Y be the map given by g(x) = f([z]), thatis g = f o ¢q. Then f is continuous if and
only if g is continuous.
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Proof: If f is continuous, then g is continuous because g = f o ¢ which is the composite of two
continuous maps. Suppose that g is continuous. Let V' C Y, be open. We need to show that f~1(V) is
open in X /~ . By definition of the quotient topology

f71(V) is open in X/~ <= ¢ 1 (f}(V)) is open in X
But
g (fHV)=(fea) (V) =g71(V)

Which is open in X since g is continuous. O

For a group G and a set X, a group action of G on X is a function * : G x X — X, where we
write * (a, z) as a * x or az, such that

1. When e € G is the identity element we have e x x = z for all z € X.

2. Foralla,b € G and all x € X, we have

ax(bxx)= (ab) *x
group op

We say that G acts on X (by using the group action).

Remark

A group action of G on X determines and is determined by a group homomorphism
p: G — Perm(X) where p(a)(x) = a * x (the homomorphism p is called a representation of G)

Remark
Given an action of G on X, we can define an equivalence relation on X by

x ~1y<=y=ax*x for some a € G.

In this case, the equivalence class of z is called the orbit of z (we might write [x] as Orb(z)) and
we write the quotient X /~ as X/G. So

X/G = {lz] |z € X}
= {Orb(z) | x € X}
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For S* = {u € R? | |u|| = 1}, we have S! x R = R?\ {0}. Define
f:S'x R — R2\ {0}
(u,t) — etu
and define
g:RZ\ {0} — St xR

Py (i,ln”xu)
||

These maps are continuous (they are elementary functions) and they are inverses of each other.

St acts on R? = C by complex multiplication. For a € R? = C,
Orb(a) = [a] = {ua | u € S'}

which is equal to the circle centered at 0 of radius |a| (with [0] = {0}).
Show that R? /S* = [0, 00) C R we define

f:R?/St — [0,00)
[z] = ||
and define
h:[0,00) — R2/S!
ri— [r] =[(r,0)] = {re?® | 6 e R}

Note that f is continuous because for the map g : R?> — [0, c0) C R given by g(z) = |z|. We
have g = f o q. Since g is continuous, it follows that f is continuous. Also A is continuous
because h = q o i where i : [0,00) — R? is the inclusion map i(r) = (7, 0). Finally, note that f
and h are inverses.
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R* = (0, 00) acts on R? be multiplication that is by ¢ * 2 = tx. The orbits are for o0 # = € R?,
[x] = {tz | 0 < t € R} which is the (open) ray from 0 through x and [0] = {0}. Each of the rays
[z] for 0 # x € R? intersects a unique point on S'. Which gives a fairly natural bijective map

f:R%/R* — S' U {0}
2
T Tal if0#£zeR
0 ifzr=0eR2

The inverse g : S' U {0} — R?/R¥ is given by u i+ [u]. Note that g is continuous (g = q o i
where i is the inclusion map i : S' U {0} — R?). But f is not continuous, for example the set
{0} is open in S* U {0} (it is an open ball) but f~1({0}) = {[0]} € R?/R™ and

g 1 ({[0]}) = {0} is not open in R2. In fact, R?/R* 2 S! U {0}. One way to show this is to note
that S! U {0} has a singleton which is open ({0}), but R? /R™ has no singleton which is open.

Remark

R2/R™ is not Hausdorff, so it is not metrizable (there is no metric we can define on R? /R* for
which that quotient topology is equal to the metric topology)
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Z acts by addition on R (by n * £ = x + n). The orbits are the sets
[x] = {z +n | n € Z} = x + Z Show that R/Z =~ S'. Define

f:R/Z — St
[t] > e?2™t
(and note that when [s] = [t] say s = t + n where n € Z we have
ei2ms — ei2ﬂ'(t+n) — eti2mt

) Note that f is continuous because the map f : R — S! given by g(t) = e*>™ is continuous with

g = f o q. The inverse map
h:St—R/Z

, 6
el — | —
To see that h is continuous, we can express h in Cartesian coordinates. We remark that there is

an angle map

6:R2\ {0} — [0, 27)

arccos\/%;’”Ty2 ify>0or (y=0and z +#0)
(#:y) — 21 — arccos \/xnyZ

ify<Oor (y=0andz<0)

This map is not continuous along the positive z-axis. In Cartesian coordinates, b : S' — R/Z is

given by
L arccos(z ify>0
h(z,y) = [f” 1 (@) .
— 5 arccos(z)| if y <0
that is by
1($,y) if ('T7y) €A
Ao y) = {hz(w,y) if (z,y) € B
Where
A={(z,y)eS* |y >0}
B={(z,y) eS' |y <0}
and

1
hi(z,y) = 5 ATccos

h =1——
o(z,y) 5, AICCOS T
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3 Connected, Path-Connected and Compact Spaces

Let X be a topological space. For subsets A, B C X, we say that A and B separate X when
A+0,B#0, AnB=(and AU B = X. We say that X is disconnected when there exist
(nonempty disjoint) open sets U, V' C X which separate X. Otherwise, we say that X is
connected.

Proposition 3.1

X is connected if and only if the only clopen sets are X and 0.

Proof: If X is disconnected, we can find open sets U, V' C X which separate X then the sets ), U,V , X
are clopen. On the other hand, if ) # U C X with both U both open and closed in X, then U and
V = X \ U are open sets in X which separate X. ]

When X is a metric space and A C X is a subspace, then A is connected if and only if there do
not exist open sets U,V in X suchthat UNA# 0, VNA#0,UNV =0and ACUUV.

The connected sets in R are the intervals (including 0, {a}, R)

The (non-empty) connected subsets of QQ are the singletons (by using the density of the
irrationals)

Theorem 3.2

If f: X — Y is a continuous map between topological spaces, and if X is connected, then f(X)
is connected.

Proof: Suppose X is connected and f : X — Y is continuous. By restricting the codomain, the map

f: X — f(X) is also continuous. Suppose, for a contradiction that f(X) is disconnected. Let U, V be
open sets in f(X) which separate f(X). Then f~1(U) and f~1(V) are open sets in X which separate
X, so that X is disconnected, giving the desired contradiction. O]

Let X be a subspace of Y. Suppose Y is disconnected. Let U, V' be open sets in Y that separate
Y.If X is connected, then X C U or X C V.

Proof: Suppose X ¢ U and X € V. Since UUV =Y, it follows that X NU # P and X NV # (. And

these two sets are open sets in X which separate X. ]
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Theorem 3.4

Let X = J, _, Ar where each subspace A, is connected. With (), A, # 0. Then X is
connected.

Proof: Suppose, for a contradiction, that X is disconnected. Let U, V' be open sets in X which separate
X.Letp € ﬂkeK A, C X =UUYV. Eitherp € U orp € V (but not both) say p € U. For each index k,
since Ay, is connected either A, C U or A;, C V and since p € A, p ¢ V, we must have 4, C U.
Since A, C U for every k € K, we have X = UkeK A;, C U. This is not possible since U and V'
separate X. ]

Theorem 3.5

The product of two connected spaces is connected.

Proof: Let X and Y be connected spaces. Suppose both X and Y are nonempty (since if either one was,
() is connected). Choose a € X and b € Y so (a,b) € X x Y. Since X x {b} = X and X is connected,
it follows that X x {b} is connected. For each z € X, since {x} X Y = Y and Y is connected, it
follows that {x} X Y is connected. Since X X {b} and {z} x Y are connected and

(X x {b}) N ({z} xY) # 0 (since (z, b) is in both), it follows from the previous theorem that the set
A, = (X x {b}) U ({z} x Y) is connected. Since each A, is connected and (] _, A, # 0 (indeed

a, b) is in the intersection) it follows that Uxe X A, = X XY is connected. ]

Let X be a subspace of Y. Let U, V' be subsets of X which separate X (not necessarily open).
Then U is open in X if and only if U NV = (). Symmetrically, V' is open in X if and only if
V NU = where U = Cly(U),V = Cly(V)

Theorem 3.7

Let X be a topological space, let A, B be subspaces with A C B C A.If A is connected, then so
is B. In particular, if A is connected, then so is A,

Proof: Suppose A is connected. Suppose for a contradiction that B is not connected. Let U,V C B be
open sets in B which separate B. Since A is connected and U, V' are open sets in B, which separate B,
by previous lemma, either A C U or A C V.Say A C U. Since A C U we have A C U so that
BCACTU. By the previous lemma, V N U = @ hence VN B =, but V C Bso V = () which
contradicts the fact that U and V' separate B. ]

Theorem 3.8

Let X, be a connected topological space for each k € K. Then ] X, is connected using the
product topology.
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When X is a topological space, and A C X, we say that A is dense in X when A = X. Note that

Z:X@theonlyclosed set K CXwithACKisK=X
<= the only open set U C X with ANU =0is U =)
< for every nonempty open set U C X we have ANU # ()

When 3 is a basis for the topology on X, verify that A = X if and only if for all } + B € B we
have AN B # .

RY = Hzi , R using the box topology is not connected. Indeed verify that the sets
U={zeR|z], < oo}
= the set of all bounded sequences in R
and
V={zeR"||z], = oo}
= the set of all unbounded sequences in R

are open in R* (with the box topology) and they cover R“.

3.1 Connected Components

Let X be a topological space. Define a binary relation ~ on X by stipulating that for a,b € X

a ~ b < there exists a connected subspace A C X with a,b € A

Note that ~ is an equivalence relation. Indeed a ~ a since {a} is connected. If a ~ b then
obviously b ~ a.If a ~ b and b ~ ¢ then we can choose connected subspaces A, B C X with
a,b € A, b,c € B, then by a previous lemma, since b € A N B, we have A U B is connected, and
a,c € AU B, so that a ~ c. The equivalence classes in X under ~ are called the connected
components of X. (Note that the connected components are disjoint and they cover X).

Theorem 3.9

Let X be a topological space. The connected components of X are the maximal connected
subspaces of X. Indeed, each connected component of X is connected, and every non-empty

connected subspace of X is contained inside exactly one of the connected components.

Proof: ]
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3.2 Path-Connectedness

Let X be a topological space. For a, b € X, a (continuous) path from a to b in X is a continuous
map « : [0,1] C R — X with a(0) = a and (1) = b. We say that X is path connected when for
every a,b € X there exists a path from a to b in X.

Theorem 3.10

Every path-connected space is connected.

Proof: Suppose X is path-connected. Suppose, for a contradiction, that X is not connected. Choose
open sets U,V C X which separate X. Choose a € U and b € V. Since X is path-connected we can
choose a path o : [0,1] C R — X with a(0) = a a(1) = b. Then the sets o *(U) and o 1(V') are open
and separate [0, 1], contradiction. |

Theorem 3.11

The image of a path connected space under a continuous map is path connected. In particular,
for topological spaces X and Y. If X = Y, then X is path connected if and only if Y is path
connected.

Proof: Let f : X — Y be continuous and suppose X is path connected. Let ¢, d € f(X). Choose

a,b € X with f(a) = ¢, f(b) = d. Since X is path connected, we can choose a path a in X from a to b.

Then 8 = foaispathinY from cto d. ]
Note

Convex sets are path connected (in normed linear spaces). More generally, the image of a convex
set (in a normed linear spaces) under a continuous map is path connected, hence connected.

A={z € R?| 1< |z| <2} is the image of [1,2] X [0, 27] under the polar coordinates map
p : R? — R? given by p(r, ) = (r cos §, r sin §) and thus path connected. (Using the fact that
rectangles (also balls) are convex and hence connected).

Proposition 3.12

Using the product topology, a product of path-connected spaces is path connected.

Proof: Let X, be path connected for each k € K. Let a,b € [[ X,. For each k € K, choose a path o, in
X, from a;, to by. Then the map « : [0, 1] — [[ X}, given by

a(t)(k) = a(t)y = ay(t)

is a (continuous) path in [[ X}, from a to b. O
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Remark

Using the box topology, this isn’t true.

Let X be a topological space. Define a binary relation ~ on X by stipulating that for a,b € X

a ~ b <= there exists a path in X from a to b

Note that this is an equivalence relation on X, indeed for a, b, c € X:
1. a ~ a since the constant path «, is a path from a to a in X.
2. If a ~ b then there is a path « from a to b. Then S(t) = a(1 —t)
3. If a ~ b and b ~ ¢ with paths «, 5 then vy : [0, 1] — X given by

() = {6(2t— 1) for 1 <

is a (continuous) path in X from a to ¢ (by the glueing lemma).

The equivalence classes in X under ~ are called the path components of X

Theorem 3.13

Let X be a topological space. The path components of X are the maximal path connected
subspaces of X. Indeed, each path component of X is path connected, and every path connected

subspace of X is contained in exactly one of the path components of X.

Proof: path components are path connected by the definition of ~. Let A be any path connected
subspace of X. Let P, @ be any path components for which AN P # () and AN Q # 0. Choose
pe ANPandqge AN Q. Since p,q € A and A is path connected, we have p ~ ¢q and hence

P = [p] = [¢q] = Q since the path components cover X and A intersects with a unique path component
P,we have A C P. ]
Note

In a topological space X, since each connected subspace of X is contained in a unique connected
component of X, and since each path component of X is path connected, hence connected, it
follows that each connected component of X is a (disjoint) union of some of the path

components of X.
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Let A= {(z,sinl) o<z <1} Let B={(0,y) | -1 <y < 1}.Let X = AU B. We see that
A = AU B = X. Note that A is path connected because it is the image of the convex set (0, %]
under the continuous map ¢ : (0, %) — R? given by g(z) = (s, sin %) Also B is convex hence
path connected. Note that X is connected since it is the closure of a connected set A. We claim
that X is not path connected, indeed there is no path in X from a point in A to a point in B.
Since A and B are path connected with (%, 0) € Aand (0,0) € B, it suffices to show that there
isno pathin X = AU B from (%, 0) to (0, 0). Suppose for a contradiction that there is such a
path a: [0,1] = AU B from (£,0) to (0,0) in X = A U B. Note that the map « : [0, 1] — R? is

continuous, say « is given by o;(rt) = (z(t),y(t)) where z,y : [0,1] — R are both continuous
with (z(t), y(t)) € X = AU Bforallt € [0,1] and with z(0) = £, z(1) = 0,y(0) = y(1) = 0.
Also recall that when (z,y) € X = AU B with z > 0 we have (z,y) € A so that y = sin <.
Since z : [0,1] — R is continuous with z(0) = £ and z(1) = 0. By IVT, we can choose

™
0 <ty <ty<-<lsothatz(t,)= m and hence
y(t,) = sin ﬁ = sin (Qngl)ﬂ = (—1)". Since (t,), _, is increasing and bounded above (by 1) it
converges with lim t, =s=sup{t, |n € N} <1landwehave 0 <t, <s<1forall

n—oo 'n

n € N. Since ¢,, — s and since « is continuous at s, we have

(2(s), y(5)) = a(s) = lim a(t,) = ( lim a(t,), lim y(t,))

n—oo n—oo n—oo
so we have
) . 2
lim z(t,) = lim ———— =0
n—oo n—o00 (2n —+ 1)7‘(‘
but

lim y(¢t,) = lim (—1)"

n—oo n—oo

which does not exist. In conclusion, X = A U B is connected, but not path connected. Since X is
connected, it only has one connected component, namely X. Since X is not path connected, it
has at least 2 path components so, since A and B are path connected with X = AU B, Aand B
are the two path components of X.

3.3 Compactness

Let X be a topological space. For a set & of subsets of X, we say that § covers X or that § is a
cover of X when X = | J&. When § is a cover of X, a subcoveris a subset X C 8 such that

X = |JR. An open cover of X is a set of open sets which covers X. We say that X is compact
when every open cover of X has a finite subcover.

Theorem 3.14

The image of a compact space under a continuous map is compact.
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Proof: Let f : X — Y be a map between topological spaces. Suppose that X is compact and f is
continuous. Note the map f : X — f(X) (by restricting codomain) is continuous. We claim that f(X)
is compact. Let T be an open cover of f(X).Let S = {f*(V) | V € T}. Then § is an open cover of
X. Since X is compact, § has a finite subcover, V], ...,V € T so that X = UZ:1 f~Y(V,). Then

f(X)= U:zl V. so that {V], ...,V } is a finite subcover of 7. Thus f(X) is compact, as claimed. O

Theorem 3.15 Heine-Borel

For A C R", A is compact iff A is closed and bounded.

Let X be a subspace of Y. For a set 7 of subsets of Y, we say 7 covers X in Y or T is a cover of
X inY,when X C | JT.When T is a cover of X in Y, a subcover of T (of X in Y) is a subset
R C T such that X C | JR. An open cover of X in Y is a set T of open sets in Y with

X C|JT. We say that X is compact in Y when every open cover of X in Y has a finite
subcover (of X in Y).

Theorem 3.16

Let X be a subspace of Y. Then X is compact (in itself) iff X is compactin Y.

Proof: Suppose X is compact (in X) let 7 be an open coverof X in Y. Let S = {V N X |V € T}. Note
that § is an open cover of X. Since X is compact in itself, we can choose V}, ..., V,, € T such that
X=U_ VnX)=U _,ViNX Then X CJ_, V, sothat {V],...,V,} is a finite subcover of T
(for X in Y'). Suppose, conversely, that X is compact in Y. Let § be an open cover of X (in X). For each
U € 8 we can choose V;; openin Y such that U = V;; N X. Then T = {V{; | U € 8} is an open cover
of X in Y. Since X is compact in Y, we can choose Uy, ...,U,, € & such that X C UZ=1 Vi, Then

X=Jvpnx=UWw,nx)=UUu
k=1 k=1 k=1
so that {Uj, ..., U, } is a finite subcover of § (of X in X). O

Remark

When X is a subspace of a metric space Y (but not in general when X is a subspace of a
topological space Y'), we have an analogous result for the connectedness of X in Y: X is
connected in Y when there do not exist open sets U, V in Y which separate X in Y, meaning
that UNX #0,VNX #£0,UNV =0, X CUUYV. Verify that (when Y is a metric space) X
is connected (in itself) iff X is connected in Y.

Theorem 3.17

Every closed subspace of a compact topological space is compact.
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Proof: Let X be a subspace of Y. Suppose Y is compact (in Y) and that X is closed in Y. Let § be an
open cover of X in Y. Since X is closedin Y, X¢ =Y \ X is open in Y. Note that § U { X*“} is an open
cover of Y. Since Y is compact, we can choose a finite subcover of § U { X} so we can choose a finite
subset X C & such that Z U {X€} covers Y. Then % is a finite subcover of § (of X in Y). ]

Theorem 3.18

Every compact subspace of a Hausdorff space is closed.

Proof:Let X C Y be a subspace. Suppose that X is compact and Y is Hausdorff. We shall show

X =Y\ XisopeninY.Letb € X For each a € X, since Y is Hausdorff we can choose disjoint
open sets U, and V, in Y with a € U, and b € V. Note that § = {U, | a € X} is an open cover of X in
Y. Since X is compact, we can choose a4, ...,a,, € X such that X C UZ=1 U,,-LetU = UZ=1 U,, and
V = ﬂ:zl Vak.NotethatX CU,beVandUNV =0.Since X CU and U NV = (), we also have
XNV =0sothat V C X Hence X¢isopeninY, and X is closed. ]

Theorem 3.19

Let f : X — Y be a map between topological spaces. Suppose f is continuous and bijective.
Suppose is X is compact and Y is Hausdorff. Then f~! : Y — X is continuous so that f is a
homeomorphism.

Proof:Let g = f~! : Y — X. To show that g is continuous, we show that g1 (K) is closed in Y for
every closed set K in X. Let K be a closed set in X. Note that since g = £~ we have g1 (K) = f(K).

Since K is closed in X and X is compact, K is compact. Since f is continuous, f(K) is compact. Since
f(K) is a closed subspace of the Hausdorff space Y, f(K) is closed in Y. ]

1. Recall that R = (0,1),S! x R =2 R?*\ {0}, R/Z = S,

2. R 2 [0, 1] since [0, 1] is compact but R is not.

3. R [0,1) since [0,1) \ {0} is connected but one cannot remove any point from R and
remain connected.

4. No two of R, R?, S*, S? are homeomorphic. Since R, R? are not compact, but S!, S? are. R
and R? are not homeomorphic since one can remove a point from R! and disconnect it but
you cannot do that with R2. S 2 S? since S! \ {p} = Rand S§? \ {p} =~ R2.

Theorem 3.20

Let X be a topological space. Then X is compact if and only if X has the following property
which we call the finite intersection property on closed sets: For every set J of closed subsets of X,

if every finite subset of 7 has nonempty intersection, then ()7 is non empty.
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A partially ordered set is a set X with a partial order < such that Vz,y,z € X
l.Lx<zx
2. fr<yandy <z thenz =y
3. fr<yandy < zthenz < 2

A chainin X is a subset C' C X such thatforallz,y € C wehavez < yory <z

Let X be a partially ordered set. If every chain in X has an upper bound in X, then X has a
maximal element (Ja € XAz € X a < 1)

Theorem 3.22 Tychanoff’s Theorem

The product of a set of compact spaces is compact, using the product topology.

4 Countability and Separation Axioms

Let X be a topological space.
1. We say that X is first countable when for each a € X, there exists a countable set B of open
sets in X such that for every open U > a there exists B € B suchthata € B C U.
2. We say that X is second countable when there exists a countable basis B for the topology on
X. We say that Lindelof when every open cover of X has a countable subcover.
3. We say that X is separable when there exists a countable dense subset of X (A C X such
that A = X).

Theorem 4.1

1. Every metric space is first-countable.
2. For every metric space X, X is second countable if and only if X is Lindelof if and only if
X is separable.

Theorem 4.2

Let X be a topological space. If X is second countable then
1. X is first countable
2. X is Lindelof
3. X is separable

Countability and Separation Axioms
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Proof: Suppose X is second countable and 3B a countable basis for the topology on X. It is clear that X
is first countable (take B, = B). To show X is Lindel6f, let § be an open cover of X. For each a € X,
choose U, € § with a € U,, then choose B, € B witha € B, CU,. Then {B, | a € X} is a countable
open cover since {B, | a € X} C B. Choose a, ... in X such that {B, |a € X} = {Bal,Baz, }
Then {Ual, } is a countable subcover of 8. To show X is separable, write B = {B;, B,, ...}. For each
k > 1, choose a;, € By. Then {a;, a,, ...} is dense in X since a;, € AN By, for each k > 1 so that

AN By, # 0. O

Here are some examples to show that when X is not second countable, the other three properties
do not imply one another

first countable | Lindelof | separable | second countable
R, v v v X
I2 v v (compact) X X
r v X v X
R X v (compact) v X
R,. X v X X
R, Y X X X

Note R, is R with the lower limit topology. I? denotes the topological space with underlying set
I%? = [0, 1]? and using the dictionary order topology. I is the Moore plane. R, is R with the co-
finite topology. R is R with the co-countable topology.

Theorem 4.3

1. Every subspace of a first countable space is first countable.
2. Every subspace of a second countable space is second countable.

Theorem 4.4

1. The product of any two first countable spaces is first countable.
2. The product of any two second countable spaces is second countable.
3. The product of any separable countable spaces is separable.

Note

A subspace of a Lindeldf space need not be Lindel6f. A subspace of a separable space need not be

separable. The product of two Lindel6f spaces need not be Lindelof.
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Let X be a topological space
1. We say that X is T1 or that the 1-point subsets are closed in X when the 1-point subsets
are closed in X.
2. We say that X is T2, or that X is Hausdorff, when for all a,b € X with a # b, there exists
disjoint open sets U,V C X witha € U and b e V.
3. We say that X is T3, or that X is regular, when 1-point subsets of X are closed and for all
a € X and for every closed set B in X with a ¢ B, there exist disjoint open sets U,V C X
witha € Uand BC V.
4. We say that X is T4 or normal when 1-point subsets of X are closed and for any two
disjoint closed subsets A, B C X, there exist disjoint open sets U,V C X such that A C U
and BC V.
5. We say that X is metrizable when there is a metric on X for which the metric topology is
equal to the topology on X.
Theorem 4.5
Let X be a topological space.
1. If X is metrizable, then X is normal
2. If X is normal, then X is regular
3. If X is regular, then X is Hausdorff
4. If X is Hausdorff, then the 1-point subsets of X are closed.

» Not every space X in which the 1-point subsets are closed is Hausdorff: for example, let X be

an infinite set with the cofinite topology.

+ Not every Hausdorft space is regular: for example, let K = {% | n e Z+} and let R be the
topological space whose underlying set is R with basis consisting of sets of the form (a, b)
with a < b and (a,b) \ K with a < b. This space is Hausdorff but not regular because the
point 0 cannot be separated from the closed set K.

+ Not every regular space is normal for example, verify that (1) R, is normal (hence regular), (2)
the product of two regular spaces is regular so that, in particular, R, x R, is regular, but (3)

R, x R, is not normal.

All

R,

Note

of the countability and separation properties are invariant under homeomorphism.

Proposition 4.6

is not second countable.

Countability and Separation Axioms
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Proof: Let B be any basis for R,. For each a € R, choose a basic open set B, € B with
a € B, C [a,a + 1) and note that a = min B,. Define F' : R, - B by F(a) by F(a) = B,. Then Fis
injective since if F'(a) = F(b) then B, = B,.So a = min B, = min B, = b. Since F is injective,

2 = R,| < |3
so that B is uncountable. ]

Theorem 4.7

1. Every subspace of a T1 space is T1

2. Every subspace of a Hausdorff space is Hausdorft
3. Every subspace of a regular space is regular

4. Every subspace of a metrizable space is metrizable

Proof:Let X C Y be a subspace.

1. Suppose Y is T1. For a € X, {a} is closed in Y and {a} = {a} N X, so it is closed in X.

2. Suppose Y is Hausdorft. Let a, b € X with a # b. Since Y is Hausdorff, we can choose disjoint
opensets U,V inY witha € Uand b € V. Then U N X and V N X are disjoint open sets in X
withae UNXandbe VNX.

3. Suppose Y is regular. Since Y is T1, so is X. Let a € X and let B be a closed set with a ¢ B. Note
that since B is closed in X, B = Cly B = BN X where B = Cly B. Since a € X and
a ¢ B= BN X wehave a ¢ B.Since Y is regular, we can choose disjoint open sets U,V in Y
with a € U and B C V.Then U N X and V N X are disjoint open sets in X with a € U N X and
B=BNXCVnX

4. The proof of the last part is an exercise.

Remark

A subspace of a normal space need not be normal. We shall soon see that for any set K, [0, 1]¥ is
normal. It can be (maybe) shown that (0,1)¥ C [0, 1]¥ is not normal when K is uncountable

Theorem 4.8 Alternate Definition of Regularity

Let X be a T1 space. Then X is regular if and only if for every a € X and every open set W in X
with a € W, there exists an open set U in X witha € U C UCw.

Proof: Suppose X is regular. Let W 5 a be open. Then W€ is closed and a ¢ W€ so, since X is regular,
we can choose disjoint open U,V witha € U, W¢ C V.Since UNV = () so U C V* which is closed,
so U C V¢ and since W¢ C V we have V¢ C W sowehavea c U CU C V¢ C W.

Suppose conversely, that for every open W in X and every a € W there exists an open set U in X with
a €U CUC W.Leta € X and B be a closed set in X with a ¢ B. Taking W = B°, we choose an
openset U in X witha € U C UC B LetV = (U c, which is open since U C B¢ we have

B C (U)c =V, and since U C U we have U N (U) =0, thatisUNV = 0. ]
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Theorem 4.9 The Closure of a Box

For each k € K, let X, be a topological space, and let A;, C X, . Then using either the product
or the box topology,

IT 4= ] 4
ke K ke K
Theorem 4.10

Using the box or product topology,
1. Every product of T1 spaces is T1
2. Every product of Hausdorff spaces is Hausdorft
3. Every product of regular spaces is regular

Remark

Products of normal spaces need not be normal (for example R, is normal, but R, x R, is not)

Theorem 4.11

1. Every compact Hausdorff space is normal

2. Every regular, second countable space is normal

3. Every ordered set (with a maximum or a minimum element), using the order topology, is
normal

Theorem 4.12 Urysohn’s Lemma

Let X be a normal topological space and let A and B be disjoint closed sets in X. Then there
exists a continuous map f : X — [0, 1] C R such that f(z) = 0forallz € A and f(z) = 1 for
allz € B.

Theorem 4.13 Urysohn’s Metrization Theorem

Every regular, second countable topological space is metrizable.

5 Topological Manifolds

A topological space X is locally homeomorphic to R™ when X has an open cover § such that
every U € § is homeomorphic to an open subset of R™.
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An n-dimensional topological manifold, also called a (topological) n-manifold, is a Hausdorff,
second countable, topological space X which is locally homeomorphic to R™.

Note that when X is an n-manifold, for each a € X we can choose an open set U, in X with

a € U, and a homeomorphism ¢, : U, C X — ¢,(U,) C R™ from U, (which is open in X) to
¢, (U,) (which is open in R"). § = {U, | a € X} is an open cover of X. When

8 ={U, | k € K} is an open cover of X and for each k € K we have a homeomorphism

¢ U, € X — ¢ (U,) CR" from each U,, to an open set ¢, (U, ) in R™, the sets U}, are called
coordinate neighbourhoods and the homeomorphisms ¢, : U, — ¢, (U,,) are called (coordinate)
charts, and the set A = {p, | k € K} is called an atlas for X. The homeomorphisms

0o prt (U, NU,) — ¢ (U, NU,) are called the transition maps, or change of coordinate
maps.

R"™ is an n-manifold, we can use one chart ¢ : R™ — R™ where ¢ is the identity map

Any n-dimensional real vector space X is an n-manifold: choose a basis {uy, ..., u,, } for X, and
define p : X — R" by (>t u,) =t

Any open subset of an n-manifold is an n-manifold. For example, the vector space M, (R) of
n X n matrices is an n?-dimensional and GL,, (R) is an open set in M, (R).

The n-sphere S™ = { € R™™ | |z| = 1} is a compact n-manifold: we can choose two charts let
p=eé,1 = (0,...,0,1) then the stereographic projections ¢ : S” \ {p} — R™ and
¥ : S™\ {—p} — R™ are homeomorphisms.

When X is an n-manifold and Y is an m-manifold, the product X x Y is an (n + m)-manifold.

Theorem 5.1

Two polygonalizations of a compact 2-manifold X have the same Euler characteristic.
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6 Fundamental Group

Let X be a topological space with a,b € X. Recall that a path from a to b in X is a continuous
map « : [0,1] C R — X with a(0) = a and (1) = b. A loop at a in X is a path from a to a.
Given two paths a and 3 from a to b in X, an (endpoint-fixing) homotopy from a:to fin X is a
continuous map F' : [0,1] x [0,1] — X such that F'(0,t) = «(t) and F'(1,t) for all ¢ € [0, 1] and
F(s,0) =aand F(s,1) =bforall s € [0,1]. We say that « is homotopic to § in X and we write
a ~ (3, when there exists a homotopy from a to 8 in X.

Theorem 6.1

Homotopy equivalence is an equivalence relation on the set of all paths from a to b in a
topological space X.

For a topological space X and a point a € X, we let 7, (X, a) be the set of equivalence classes of
loops at a in X under homotopy equivalence.

For a topological space X with a, b, c € X, the constant loop k, at a in X is the map

K, :|0,1] = X given by k,(t) = a for all t € [0, 1]. For a path o in X from a to b, the inverse
path o' in X from b to a is the map o ! : [0,1] — X given by (a~!)(¢) = a(1 — t). For a path
ain X from a to b and a path 8 in X from b to ¢, the product path af in X from a to c is the
map af : [0,1] — X given by

(aB)(t) = {“@”

=

[\)
N

|

—
o= O
IA A
o~ &
IA A
— N

Theorem 6.2

For a topological space X with a € X, 7, (z, a) is a group with identity 1 = [k,]| and with
[a]™! = [a!] and with [a][B] = [a]. This group is called the fundamental group (or the first
homotopy group) of X at a. Indeed we have the following

1. For paths o, 8 from a to b, if @ ~ S then ™! ~ 71
For paths a,  from a to b and paths 7, § from b to c if & ~ 8 and v ~ §, then ay ~ (9.
For a path a from a to b, k,a ~ a and ak;, ~ a.

1

For a path a from a to b, aa™ ~ K, and o la ~ k.

S 2

For a path « from a to b, and a path 3 from b to ¢, and a path ~ from ¢ to d, we have

(aB)y ~ a(B)

The Fundamental Group of S*
Answer: 7, (S',1) = (o) = Z where o : [0,1] — S is given by o(t) = e"*™

Fundamental Group 38



PMATH 367 FaLL 2025 JAKE EDMONSTONE

1. (Path Lifting)
Let o : [0, 1] — C* be a continuous map with a/(0) = p. Choose 6, € R so that p = |p|e®®o
(6, is unique up to an integer multiple of 27). Then there exist unique continuous maps
r,0:[0,1] — R with 7(¢) > 0 for all ¢ € [0, 1] and with 6(0) = 6,, such that
a(t) = r(t)e?® forall t € [0,1]

2. (Homotopy Lifting)
Let F': [0,1] x [0,1] — C* be a continuous map with F'(0,0) = p. Choose §, € R such
that p = |p|e‘®0. Then there exist unique continuous maps R, © : [0, 1] — R with
R(s,t) > 0 for all s, ¢ and with ©(0,0) = 6, such that F'(s,t) = R(s,t)e’®®? for all s, .

Note

2. For a continuous map « : [a,b] C R — C\ {w} with a(a) = p = |p|e?®0 there exist unique
continuous maps , 6 : [a,b] C R — R with r(¢) > 0 for all ¢ € [a, b] and with §(a) = 6,
such that a(t) = w + r(t) + €™ for all ¢ € [a, b].

3. For a continuous map « : [a,b] C R — C\ {w} with

a(t) = w+ r(t)e®
= w + p(t)e¥®)

with 7, p, 8, ¢ continuous. () > 0, p(t) > 0 for all ¢t. f(a) = 6, ¢(a) = 6, + 27n then by
uniqueness,

p(t) =r(t) forallt € [a,d]
and

o(t) = 6(t) + 2mn  for all t € [a, d]

Let a : [a,b] C R — C\ {w} be continuous. We define the winding number wind(a, w), of «
about w as follows:

write a(t) = w + r(t)e?®® with r, 6 : [a,b] C R — R continuous with r(¢) > 0 for all ¢ € [a, b].
Then define

6(b) — 6(a)

wind (o, w) = 5
s

(and note that this does not depend on the choice of §(a) = 6, by remark 3).

Fundamental Group

1. For « as above, if « is differentiable or €1 or piecewise € k etc, then so are the maps 7 and 6.

Theorem 6.3 Polar Coordinate Representations

39



PMATH 367 FaLL 2025 JAKE EDMONSTONE

Note

1. For « as above, if a(b) = a(a) then wind (o, w) € Z

2. For paths o, 8 : [0,1] = C\ {w} in C \ {w}, for p # w, we have wind(x,, w) = 0 and
wind(a™ !, w) = — wind(a, w) and if a(0) = a, (1) = b = 3(0), 3(1) = c then
wind(af, w) = wind (o, w) + wind (8, w)

3. When a : [a,b] C R — C\ {w} is piecewise €' (which means « is continuous and o is
piecewise continuous so for a(t) = z(t) + iy(t), T and y are piecewise C1) we can calculate
wind (o, w) using an integral as follows:

For a piecewise continuous (or integrable) map g : [a,b C R — C] given by g(t) = z(t) + iy(y).

We define
b b b
| o= owar=[

x(t) dt-l—i/b y(t)dt

a a a =a

When a : [a,b] CR — U C C is piecewise €' and f : U C C — C is continuous, we define

Lf:Lﬂam=Liﬂmmw@a

Given a piecewise C* map « : [a,b] C R — C\ {w}, writing a as a(t) = w + 7(t)e?® with r, 6 as
usual and by letting f(z) 1

T oz—w

/af:/az(izw=/:af(oz(t))a’(t)dt=/: %dt:.--zlnﬂﬂzwwmd(a,w)

Lo o(t) —w r(a)

(which is continuous on C \ {w}) we have

In particular, when a(a) = a(b) so that r(a) = r(b) and wind(«, w) € Z, we have

1
wind(a, w) = —/ dz

271 zZ—w

Theorem 6.4

Let I be an interval in R with 1 € I C R* = (0, 00) and let

A={z€C||z|el}={re eC|rel, 0 eR}

Then 7, (A, 1) = ([o]) = Z where o : [0,1] — A is given by o(t) = 2™

Proof: We claim that for loops o and 3 at 1 in A, we have
a ~ f < wind(«, 0) = wind(, 0)
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Proposition 6.5

Properties of Fundamental Group

Note

Let X be a topological space with a € X. Let P be the path component of a in X.
1. If ais a path from @ to b in X then b € P and indeed «(t) € P for all t € [0, 1].
2. If @ and f are two paths from a to b in X and F' is a homotopy from « to £ in X, then
F(s,t) € P for all s,t (because [0, 1] x [0, 1] is convex, hence path connected and F' is
continuous)

It follows that 7, (X, a) = m; (P, a)

Theorem 6.6
Let v be a path from a to b in X. Then the map
Py - 7T1(X,CL) — 7T1(X7b)

@, ([a]) = [v "]

is a well defined group isomorphism (called a change of basepoint)

For a topological space X we say that X is simply connected when X is path connected and
71 (X) = 0 (to be precise m, (X, a) = {[k,]} for some, hence any a € X).

Every convex set X in a normed linear space is simply connected (given any loop « at a in X,
the map F[0, 1] x [0,1] — X given by F(s,t) = a + s(a(t) —a) = a(l — s) + sa(t) isa
homotopy from k, to a in X).

6.1 Invariance Under Homeomorphism

A based topological space is a pair (X, a) where X is a topological space and a € X. We write
f:(X,a) — (Y,b) to indicate that f : X — Y with f(a) = b.

Given a continuous map f : (X, a) — (Y,b), the map f, : m;(X,a) — 7 (Y, b) given by
f.([a]) = [f o o] is a well defined group homomorphism which we call the homomorphism of
fundamental groups induced by f, or the pushforward of f.
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For a set S, we write idg to be the identity map on S (that is the map idg : S — S given by
idg(z) =z forallz € S).

Theorem 6.7

For a based topological space (X, a):

1. (ldX)* = idTrl(X,a)
2. For continuous maps f : (X,a) — (Y,b)and g : (Y,b) — (Z,c), we have

(gofe=9g.o f.

Remark

Using the language of category theory, we have a covariant F’ from the category of based
topological spaces (with continuous maps of based topological spaces) to the category of groups
(with group homomorphisms) given by

F(Xva) = 7T1(X7 a’)
and for a continuous map f : (X,a) — (Y, ),

F(f)=f.: F(X,a) = F(Y,0)

Theorem 6.8

If f:(X,a) — (Y,b) is a homeomorphism, then 7, (X, a) = 7, (Y, b), indeed the map
fo :m(X,a) = m(Y,b) is an isomorphism.

For based spaces (X, a) and (Y, b), prove that
7T1(X X Ya (CL, b)) = 7T1(X, CI,) X ’/Tl(Ya b)
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6.2 Invariance Under Homotopy of Spaces

1. For continuous maps f,g: X — Y a (free) homotopy from f to g is a continuous map

F :[0,1] x X — Y such that
F0,z) = f(z) and F(1,z)=g(x) forall z € X

When such a map exists, we say that f and g are (freely) homotopic, and we write f ~ g.
2. For continuous maps f,g : (X,a) — (Y, b) a homotopy from f to g relative to a is a
continuous map F': [0,1] x X — Y such that

F(0,z) = f(z) and F(1,z)=g(x) for all z € X
and
F(s,a) = f(a) =g(a) =0 for all s € [0, 1]

When such a homotopy exists, we say f and g are homotopic relative to a, and we write

f~g (rel. a)
3. For topological spaces X and Y and for A C X, and for continuous maps f,g: X - Y a

homotopy from f to g relative to A is a continuous map F': [0, 1] x X — Y such that
F(0,z) = f(z) and F(1,z)= g(x) for all z € X
and
F(s,a) = f(a) = g(a) for all a € A and s € [0, 1]

when such a homotopy exists, we say that f and g are homotopic relative to A and write
f~g (rel. A).

Invariance Under Homotopy of Spaces 43
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